工程力学 ›› 2019, Vol. 36 ›› Issue (7): 18-29.doi: 10.6052/j.issn.1000-4750.2018.06.0318

• 基本方法 • 上一篇    下一篇

正交异性膜材大变形行为的有限质点法求解

杨超1,2, 罗尧治1, 郑延丰1   

  1. 1. 浙江大学空间结构研究中心, 杭州 310058;
    2. 广东省高等学校结构与风洞重点实验室, 汕头 515063
  • 收稿日期:2018-06-05 修回日期:2019-01-05 出版日期:2019-07-06 发布日期:2019-07-06
  • 通讯作者: 罗尧治(1966-),男,浙江人,教授,博士,博导,主要从事大跨度空间结构研究(E-mail:luoyz@zju.edu.cn). E-mail:luoyz@zju.edu.cn
  • 作者简介:杨超(1986-),男,浙江人,博士后,主要从事大跨度空间结构研究(E-mail:04tmgcyc@zju.edu.cn);郑延丰(1987-),男,福建人,博士后,主要从事大跨度空间结构研究(E-mail:yanfeng39@zju.edu.cn).
  • 基金资助:
    国家重点研发计划项目(2017YFC0806100);国家自然科学基金项目(51578494,51778568);广东省高等学校结构与风洞重点实验室开放基金项目(201602)

Large deformation analysis of orthotropic membranes using the finite particle method

YANG Chao1,2, LUO Yao-zhi1, ZHENG Yan-feng1   

  1. 1. Space Structure Research Center of Zhejiang University, Hangzhou 310058, China;
    2. Key Laboratory of Structure and Wind Tunnel of Guangdong Higher Education Institutes, Shantou 515063, China
  • Received:2018-06-05 Revised:2019-01-05 Online:2019-07-06 Published:2019-07-06

摘要: 建筑薄膜具有正交异性和拉伸非线性的力学特性,其本构关系的表征和大变形行为的描述都较为复杂,具有很强的几何、材料双重非线性特征。有限质点法是一种新颖的结构数值分析方法,它将传统分析力学方法中复杂的函数连续体模型用清晰的离散质点物理模型取代,通过质点的运动描述结构的行为。该文根据途径单元的基本概念直接在质点内力计算过程中引入不同的膜材本构,将有限质点法拓展应用于正交异性薄膜结构的几何与材料非线性大变形分析。为了准确表征膜材力学特性,根据复合材料本构理论分别建立了适用于有限质点法的正交异性膜材的线性与非线性拉伸本构模型,并通过若干算例探讨了该文方法和程序的适用性和正确性。

关键词: 薄膜结构, 非线性, 有限质点法, 正交异性, 大变形

Abstract: Due to the orthotropic and tensile nonlinear characteristics of thin structural membranes, the constitutive relation and large deformation behavior of these materials are complicated, as it always has strong geometry and material nonlinearity. The finite particle method (FPM) is a novel structural numerical method, which models the analyzed domain by a set of discretized particles instead of a mathematical continuous body in those traditional methods based on analytical mechanics. It describes structural behaviors by analyzing particles movement. With the concept of path unit, it is convenient to introduce various constitutive laws of membranes in the evaluation of internal forces. This paper explores the possibility of the proposed method being applied in the large deformation analysis of membrane structures exhibiting the geometric and material nonlinearity. According to the constitutive theory of composite materials, two material models (i.e. linear and nonlinear orthotropic models) are developed and implemented in the program. Numerical examples are presented to demonstrate the validity and applicability of this method.

Key words: membrane structure, nonlinearity, finite particle method, orthotropic, large deformation

中图分类号: 

  • TU383
[1] 杨庆山, 姜忆南. 张拉索-膜结构分析与设计[M]. 北京:科学出版社, 2004:45-70. Yang Qingshan, Jiang Yinan. Analysis and design of tensioned cable-membrane structure[M]. Beijing:Science Press, 2004:45-70. (in Chinese)
[2] Kao R, Perrone N. Large deflections of axisymmetric circular membranes[J]. International Journal of Solids and Structures, 1971, 7(12):1601-1612.
[3] Onãte E, Flores F G, Marcipar J. Membrane structures formed by low pressure inflatable tubes:New analysis method and recent construction[C]//Onãte E, Kropelin B. Textile Composites and Inflatable Structures Ⅱ. Netherlands:Springer, 2008:163-194.
[4] Bletzinger K U, Linhard J, Wuchner R. Advanced numerical methods for the form finding and patterning of membrane structures[C]//Pimenta P D M, Wriggers P. New trends in thin structures:Formulaiton, Optimization and Coupled Problems. Vienna:Springer, 2010:133-154.
[5] Zhang Y, Xu J, Zhang Q. Advances in mechanical properties of coated fabrics in civil engineering[J]. Journal of Industrial Textiles, 2018, 48(1):255-271.
[6] Kato S, Yoshino T, Minami H. Formulation of constitutive equations for fabric membranes based on the concept of fabric lattice model[J]. Engineering Structures, 1999, 21(8):691-708.
[7] Pargana J B, Lloyd-Smith D, Izzuddin B A. Advanced material model for coated fabrics used in tensioned fabric structures[J]. Engineering Structures, 2007, 29(7):1323-1336.
[8] Reese S, Raible T, Wriggers P. Finite element modelling of orthotropic material behaviour in pneumatic membranes[J]. International Journal of Solids and Structures, 2001, 38(52):9525-9544.
[9] Gonçalve F R, Campello E M B. Orthotropic material models for the nonlinear analysis of structural membranes[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2014, 36(4):887-899.
[10] 喻莹. 基于有限质点法的空间钢结构连续倒塌破坏研究[D]. 杭州:浙江大学, 2010. Yu Ying. Progressive collapse of space steel structures based on the finite particle method[D]. Hangzhou:Zhejiang University, 2010. (in Chinese)
[11] Yu Y, Luo Y Z. Motion analysis of deployable structures based on the rod hinge element by the finite particle method[J]. Proceedings of The Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering, 2009, 223(7):156-171.
[12] 俞锋, 尹雄, 罗尧治, 等. 考虑接触点摩擦的索滑移行为分析[J]. 工程力学, 2017, 34(8):42-50. Yu Feng, Yin Xiong, Luo Yaozhi, et al. Cable sliding analysis considering frictional effect[J]. Engineering Mechanics, 2017, 34(8):42-50. (in Chinese)
[13] 张鹏飞, 罗尧治, 杨超. 薄壳屈曲问题的有限质点法求解[J]. 工程力学, 2017, 34(2):12-20.Zhang Pengfei, Luo Yaozhi, Yang Chao. Buckling analysis of thin shell using the finite particle method[J]. Engineering Mechanics, 2017, 34(2):12-20. (in Chinese)
[14] 喻莹, 谭长波, 金林, 等. 基于有限质点法的单层球面网壳强震作用下连续倒塌破坏研究[J]. 工程力学, 2016, 33(5):134-141. Yu Ying, Tan Changbo, Jin Lin, et al. Research on seismic progressive collapse of single-layer reticulated dome using the finite particle method[J]. Engineering Mechanics, 2016, 33(5):134-141. (in Chinese)
[15] 罗尧治, 杨超. 求解平面固体几何大变形问题的有限质点法[J]. 工程力学, 2013, 30(4):260-268. Luo Yaozhi, Yang Chao. The finite particle method for solving geometric large deformation of planar solids[J]. Engineering Mechanics, 2013, 30(4):260-268. (in Chinese)
[16] Yang C, Shen Y, Luo Y. An efficient numerical shape analysis for light weight membrane structures[J]. Journal of Zhejiang University Science A, 2014, 15(4):255-271.
[17] 郑延丰, 罗尧治. 基于有限质点法的多尺度精细化分析[J]. 工程力学, 2016, 33(9):21-29. Zheng Yanfeng, Luo Yaozhi. Multi-scale fine analysis based on the finite particle method[J]. Engineering Mechanics, 2016, 33(9):21-29. (in Chinese)
[18] Belytschko T, Liu W K, Moran B. Nonlinear Finite Elements for Continua and Structures[M]. New York:John Wiley & Son, 2000:544-549.
[19] Rezaiee-Pajand M, Kadkhodayan M, Alamatian J. A new method of fictitious viscous damping determination for the dynamic relaxation method[J]. Computers & Structures, 2011, 89(9/10):783-794.
[20] Oakley D R, Knight Jr N F. Adaptive dynamic relaxation algorithm for non-linear hyperelastic structures Part I. Formulation[J]. Computer Method in Applied Mechanics and Engineering, 1995, 126(1/2):67-89.
[21] Tsiatas G, Katsikadelis J. Large deflection analysis of elastic space membranes[J]. International Journal For Numerical Methods in Engineering, 2006, 65(2):264-294.
[22] 易洪雷, 丁辛, 陈守辉. PES/PVC膜材料拉伸性能的各向异性及破坏准则[J]. 复合材料学报, 2005, 22(6):98-102. Yi Honglei, Ding Xin, Chen shouhui. Orthotropic behavior and strength criterion of PES/PVC membrane materials under tensile loading[J]. Acta Materiae Compositae Sinica, 2005, 22(6):98-102. (in Chinese)
[23] Ambroziak A, Klosowski P. Mechanical testing of technical woven fabrics[J]. Journal of Reinforced Plastics and Composites, 2013, 32(10):726-739.
[24] Bonet J, Wood R D, Mahaney J. Finite element analysis of air supported membrane structures[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 190(10):579-595.
[1] 曹胜涛, 李志山, 刘付钧, 黄忠海. 基于Bouc-Wen模型的消能减震结构显式非线性时程分析[J]. 工程力学, 2019, 36(S1): 17-24.
[2] 杨雅斌, 石广玉. 正交异性钢桥面板肋-面板焊缝疲劳验算的应力分析模型评估[J]. 工程力学, 2019, 36(S1): 98-105.
[3] 杨浩文, 吴斌, 潘天林, 谢金哲. Timoshenko梁能量守恒逐步积分算法[J]. 工程力学, 2019, 36(6): 21-28.
[4] 郑翥鹏, 邱昊, 夏丹丹, 雷鹰, 刘德全, 程棋锋. 未知激励下的无迹卡尔曼滤波新方法[J]. 工程力学, 2019, 36(6): 29-35,48.
[5] 曹胜涛, 李志山, 刘博. 基于显式摩擦摆单元的大规模复杂连体结构非线性时程分析[J]. 工程力学, 2019, 36(6): 128-137.
[6] 牟犇, 王君昌, 崔瑶, 庞力艺, 松尾真太朗. 一种改进型方钢管柱与钢梁连接节点抗震性能研究[J]. 工程力学, 2019, 36(6): 164-174.
[7] 张肖雄, 贺佳. 基于扩展卡尔曼滤波的结构参数和荷载识别研究[J]. 工程力学, 2019, 36(4): 221-230.
[8] 梁洪超, 楼文娟, 丁浩, 卞荣. 非线性振型结构HFFB试验模态力计算方法及不确定性分析[J]. 工程力学, 2019, 36(3): 71-78.
[9] 陈洋洋, 陈凯, 谭平, 张家铭. 负刚度非线性能量阱减震控制性能研究[J]. 工程力学, 2019, 36(3): 149-158.
[10] 周茗如, 卢国文, 王腾, 王晋伟. 结构性黄土劈裂注浆力学机理分析[J]. 工程力学, 2019, 36(3): 169-181.
[11] 曹胜涛, 路德春, 杜修力, 赵密, 程星磊. 基于GPU并行计算的地下结构非线性动力分析软件平台开发[J]. 工程力学, 2019, 36(2): 53-65,86.
[12] 施洲, 张勇, 杨仕力, 蒲黔辉. 铁路正交异性桥面加劲肋-横隔板局部疲劳受力特性研究[J]. 工程力学, 2019, 36(2): 124-133.
[13] 朱健, 赵均海, 谭平, 金建敏. 基于CFRP加固的钢混排架厂房全寿命周期地震成本研究[J]. 工程力学, 2019, 36(2): 141-153.
[14] 江旭东, 李鹏飞, 刘铮, 滕晓艳. 球囊扩张式血管支架介入对弯曲血管的生物力学损伤研究[J]. 工程力学, 2019, 36(2): 239-248.
[15] 袁驷, 蒋凯峰, 邢沁妍. 膜结构极小曲面找形的一种自适应有限元分析[J]. 工程力学, 2019, 36(1): 15-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日