工程力学 ›› 2019, Vol. 36 ›› Issue (7): 156-164.doi: 10.6052/j.issn.1000-4750.2018.06.0316

• 土木工程学科 • 上一篇    下一篇

带自复位耗能支撑钢板剪力墙墙板受力性能研究

刘嘉琳, 徐龙河   

  1. 北京交通大学土木建筑工程学院, 北京 100044
  • 收稿日期:2018-06-05 修回日期:2019-01-22 出版日期:2019-07-06 发布日期:2019-07-06
  • 通讯作者: 徐龙河(1976-),男,黑龙江人,教授,博士,博导,从事结构抗震研究(E-mail:lhxu@bjtu.edu.cn). E-mail:lhxu@bjtu.edu.cn
  • 作者简介:刘嘉琳(1992-),女,吉林人,博士生,从事结构抗震研究(E-mail:16115324@bjtu.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51578058);北京市自然科学基金项目(8172038)

Study on the mechanical behavior of wall plate of steel plate shear wall with self-centering energy dissipation braces

LIU Jia-lin, XU Long-he   

  1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
  • Received:2018-06-05 Revised:2019-01-22 Online:2019-07-06 Published:2019-07-06

摘要: 提出一种由自复位耗能支撑和两边梁连接墙板组成的带自复位耗能支撑钢板剪力墙,对其构造及滞回性能进行介绍。建立有效的有限元分析模型,对两边梁连接墙板在往复荷载作用下的受力性能、受压承载力及墙板对整体滞回的影响进行研究。结果表明,墙板滞回曲线存在捏缩现象,且墙板内产生的屈曲半波越多,捏缩越严重。墙板的平面外变形随宽高比的增大而增大,随高厚比的增大而减小,且受宽高比影响更大,在侧向力作用下,墙板内形成局部拉力带。建立了用于计算墙板内受压应力和受压承载力的公式,当支撑水平剩余恢复力大于墙板受压承载力时,带自复位耗能支撑钢板剪力墙在支撑恢复力的作用下具有很好的复位能力。

关键词: 钢板剪力墙, 自复位耗能支撑, 两边梁连接墙板, 滞回性能, 复位能力

Abstract: A steel plate shear wall with self-centering energy dissipation braces (SPSW-SCEDB) that consists of self-centering energy dissipation braces and two side beam-connected wall plate is proposed. The configuration and idealized hysteretic behaviors of SPSW-SCEDB are presented. A finite element analysis model is developed to study the mechanical behavior, the compressive bearing capacity and the effect on the overall hysteresis of the two side beam-connected wall plate under cyclic loadings. Results indicate that the hysteretic curve of the wall plate shows pinching phenomenon, while more half-wave of bending generated in the wall plate leads to more severe pinching. The out-of-plane deformation of the wall plate increases with the increase of width-to-height ratio, decreases with the increase of the height-to-thickness ratio, and it is more significantly affected by the width-to-height ratio. The partial tension field is formed in the wall plate under the action of lateral force, and the equations for calculating the compressive stress and compressive bearing capacity of the two side beam-connected wall plate are established. When the horizontal remaining restoring force of the braces is greater than the compressive bearing capacity of the wall plate, the full self-centering capability of the SPSW-SCEDB is achieved by the restoring force of the braces.

Key words: steel plate shear wall, self-centering energy dissipation brace, two side beam-connected wall plate, hysteretic behavior, self-centering capability

中图分类号: 

  • TU352.1
[1] Abdollahzadeh G R, Ghobadi F. Linked mathematical-informational modeling of perforated steel plate shear walls[J]. Thin-Walled Structures, 2015, 94:512-520.
[2] Thorburn L J, Kulak G L, Montgomery C J. Analysis of steel plate shear walls[R]. Edmonton, Alberta, Canada:Structural Engineering Report No. 107. Department of Civil Environmental Engineering, University of Alberta, 1983.
[3] 郝际平, 袁昌鲁, 樊春雷, 等. 钢板剪力墙结构基于性能的塑性设计方法研究[J]. 工程力学, 2015, 32(7):118-127. Hao Jiping, Yuan Changlu, Fan Chunlei, et al. Performance-based plastic design method for the slender unstiffened steel plate shear walls[J] Engineering Mechanics, 2015, 32(7):118-127. (in Chinese)
[4] 朱力, 聂建国, 樊健生. 开洞钢板剪力墙的抗侧刚度分析[J]. 工程力学, 2013, 30(9):200-211. Zhu Li, Nie Jianguo, Fan Jiansheng. Lateral stiffness of steel plate shear walls with openings[J] Engineering Mechanics, 2013, 30(9):200-211. (in Chinese)
[5] Wei M W, Liew J Y R, Yong D, et al. Experimental and numerical investigation of novel partially connected steel plate shear walls[J]. Journal of Constructional Steel Research, 2017, 132:1-15.
[6] Shekastehband B, Azaraxsh A, Showkati H. Experimental and numerical study on seismic behavior of LYS and HYS steel plate shear walls connected to frame beams only[J]. Archives of Civil and Mechanical Engineering, 2017, 17(1):154-168.
[7] Guo H L, Rong Q, Ma X B, et al. Behavior of steel plate shear wall connected to frame beams only[J]. International Journal of Steel Structures, 2011, 11(4):467-479.
[8] Clayton P M, Winkley T B, Berman J W, et al. Experimental investigation of self-centering steel plate shear walls[J]. Journal of Structural Engineering, 2011, 138(7):952-960.
[9] Xu L H, Fan X W, Li Z X. Development and experimental verification of a pre-pressed spring self-centering energy dissipation brace[J]. Engineering Structures, 2016, 127:49-61.
[10] 徐龙河, 樊晓伟, 逯登成, 等. 预压弹簧自恢复耗能支撑恢复力模型与滞回特性研究[J]. 工程力学, 2016, 33(10):116-122. Xu Longhe, Fan Xiaowei, Lu Dengcheng, et al. Study on restoring force model and hysteretic behaviors of pre-pressed spring self-centering energy dissipation brace[J] Engineering Mechanics, 2016, 33(10):116-122. (in Chinese)
[11] Xu L H, Liu J L, Li Z X. Behavior and design considerations of steel plate shear wall with selfcentering energy dissipation braces[J]. Thin-Walled Structures, 2018, 132:629-641.
[12] Erochko J A. Improvements to the design and use of post-tensioned self-centering energy-dissipative (SCED) braces[D]. Canada:University of Toronto, 2013.
[13] FEMA P-58-1, Seismic performance assessment of buildings volume 1-methodology[S]. Washington, D.C.:Federal Emergency Management Agency, 2012.
[1] 李达, 牟在根. 内嵌VV-SPSW平面钢框架结构抗震性能研究[J]. 工程力学, 2019, 36(S1): 210-216.
[2] 谢启芳, 张利朋, 王龙, 崔雅珍, 杨柳洁. 拔榫状态下直榫节点滞回性能有限元分析[J]. 工程力学, 2019, 36(S1): 138-143.
[3] 王威, 刘格炜, 苏三庆, 张龙旭, 任英子, 王鑫. 波形钢板剪力墙及组合墙抗剪承载力研究[J]. 工程力学, 2019, 36(7): 197-206,226.
[4] 徐龙河, 孙雨生, 要世乾, 李忠献. 装配式自复位耗能支撑恢复力模型与试验验证[J]. 工程力学, 2019, 36(6): 119-127,146.
[5] 杨俊芬, 程锦鹏, 翟伟, 张文喆. 内填脱硫石膏砌块墙体的新型装配式钢框架抗震性能研究[J]. 工程力学, 2019, 36(6): 147-156.
[6] 徐龙河, 武虎. 设置自复位耗能支撑的斜拉桥横向抗震性能研究[J]. 工程力学, 2019, 36(4): 177-187.
[7] 张爱林, 张勋, 刘学春, 王琦. 钢框架-装配式两边连接薄钢板剪力墙抗震性能试验研究[J]. 工程力学, 2018, 35(9): 54-63,72.
[8] 肖水晶, 徐龙河, 卢啸. 具有复位功能的钢筋混凝土剪力墙设计与性能研究[J]. 工程力学, 2018, 35(8): 130-137.
[9] 汪大洋, 韩启浩, 张永山. 多块混凝土板拼装组合钢板剪力墙试验与有限元参数影响研究[J]. 工程力学, 2018, 35(7): 83-93,138.
[10] 李灿军, 周臻, 谢钦. 摩擦耗能型SMA杆自复位梁柱节点滞回性能分析[J]. 工程力学, 2018, 35(4): 115-123.
[11] 刘子珅, 杨红, 张吉庆. 基于横向挠度的钢筋屈曲状态判断方法研究[J]. 工程力学, 2018, 35(2): 144-152.
[12] 贾明明, 周洲, 吕大刚, 杨宁. 摇摆桁架-钢框架结构的刚度比需求及地震响应分析[J]. 工程力学, 2018, 35(10): 66-74.
[13] 徐龙河, 肖水晶, 卢啸. 内置碟簧自复位联肢剪力墙参数设计与滞回性能研究[J]. 工程力学, 2018, 35(10): 144-151,161.
[14] 徐龙河, 谢行思, 李忠献. 自复位变阻尼耗能支撑的力学原理与性能研究[J]. 工程力学, 2018, 35(1): 201-208.
[15] 王庆利, 牛献军, 冯立明. 圆CFRP-钢管混凝土压弯构件滞回性能的参数分析与恢复力模型[J]. 工程力学, 2017, 34(增刊): 159-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日