工程力学 ›› 2019, Vol. 36 ›› Issue (7): 248-256.doi: 10.6052/j.issn.1000-4750.2018.06.0314

• 土木工程学科 • 上一篇    

孔隙固体超弹性本构模型与应用

马康, 程晓辉   

  1. 清华大学土木工程系, 北京 100084
  • 收稿日期:2018-06-04 修回日期:2019-03-16 出版日期:2019-07-06 发布日期:2019-07-06
  • 通讯作者: 程晓辉(1971-),男,陕西人,副教授,博士,博导,主要从事岩土力学本构理论研究(E-mail:chengxh@tsinghua.edu.cn). E-mail:chengxh@tsinghua.edu.cn
  • 作者简介:马康(1989-),男,陕西人,博士生,主要从事岩土体本构模型研究(E-mail:mak15@mails.tsinghua.edu.cn).
  • 基金资助:
    软土能源桩温度蠕变的微观机理与热力耦合宏观模型研究项目(51778338)

The hyperelastic constitutive model of porous solid and its application

MA Kang, CHENG Xiao-hui   

  1. Department of Civil Engineering, Tsinghua University, Beijing 100084, China
  • Received:2018-06-04 Revised:2019-03-16 Online:2019-07-06 Published:2019-07-06

摘要: 油气井封固、核废料填埋与浅层地热能利用等问题是能源岩土领域的研究热点。土体、岩石、混凝土材料的多场耦合本构模型理论是这些研究热点问题的核心所在。传统固体弹塑性力学、岩土力学与孔隙固体力学理论相比,由于其基本假设或构建手段的局限性,其关于岩石与混凝土材料的变形计算往往会产生较大误差,且理论扩展性不强。该文分别从饱和岩土力学理论、经典Biot孔隙弹性力学理论出发,阐述其在孔隙固体材料本构理论的相关研究工作,并进行梳理与对比;其后运用严格物理热力学理论框架,建立孔隙固体材料的超弹性本构模型;最后针对石灰石与水泥石的既有试验数据,验证孔隙固体超弹性本构模型的有效性。

关键词: 岩土力学, Biot孔隙固体弹性, 热力学, 超弹性本构, 弹性模量

Abstract: The sealing of oil and gas wells, nuclear waste landfilling, and shallow geothermal energy utilization are hot research topics in the field of energy geotechnics, while the constitutive model theory of soil, rock, and concrete materials is the core area of these studies. However, errors arise from the calculation of deformation of rock and concrete materials due to the limitations of basic assumptions or construction methods in traditional soil mechanics and pore elasticity theory, the theoretical scalability of which is also weak. Based on the theory of saturated soil mechanics and pore elasticity theory, this paper analyzes and evaluates the related research work on the constitutive theory of porous solid materials. Furthermore, it uses thermodynamic means to establish the hyperelastic constitutive model of porous solid materials. The effectiveness of the proposed mechanical model is verified by the existing experimental datum on limestone and hardened cement paste.

Key words: geomechanics, Biot poroelasticity, thermodynamics, hyperelasticity, elasticity modulus

中图分类号: 

  • TU341
[1] Coussy O. Mechanics and physics of porous solids[M]. United Kingdom:John Wiley & Sons, 2010:61-83.
[2] Ghabezloo S, Sulem J. Effect of the volume of the drainage system on the measurement of undrained thermos-poro-elastic parameters[J]. International Journal of Rock Mechanics & Mining Sciences, 2010, 47(1):60-68.
[3] 郑黎明, 刘静, 蒲春生, 等. 油藏渗流过程中孔隙弹性模型的分析与修正[J]. 中国石油大学学报(自然科学版), 2017, 41(3):114-121. Zheng Liming, Liu Jing, Pu Chunsheng, et al. Analysis and modification of Biot poro-elastic theory for application in flow modeling of oil reservoirs[J]. Journal of China University of Petroleum, 2017, 41(3):114-121. (in Chinese)
[4] Biot M A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics, 1941, 12(10):155-164.
[5] 李广信. 高等土力学[M]. 第2版. 北京:清华大学出版社, 2016:336-346. Li Guangxin. Advanced Soil Mechanics[M]. 2nd ed. Beijing:Tsinghua University Press, 2016:336-346. (in Chinese)
[6] Ghabezloo S, Sulem J, Guédon S, et al. Poromechanical behaviour of hardened cement paste under isotropic loading[J]. Cement and Concrete Research, 2008, 38(12):1424-1437.
[7] Ghabezloo S. Association of macroscopic laboratory testing and micromechanics modelling for the evaluation of the poroelastic parameters of a hardened cement paste[J]. Cement and Concrete Research, 2010, 40(8):1197-1210.
[8] 张守伟, 孙建孟, 苏俊磊, 等. 砂砾岩弹性试验研究[J]. 中国石油大学学报(自然科学版), 2010, 34(5):63-76. Zhang Shouwei, Sun Jianmeng, Su Junlei, et al. Experimental investigation on elasticity of glutenite[J]. Journal of China University of Petroleum, 2010, 40(8):1197-1210. (in Chinese)
[9] 金浏, 杜修力. 孔隙率变化规律及其对混凝土变形过程的影响[J]. 工程力学, 2013, 30(6):183-190. Jin Liu, Du Xiuli. Variation of porosity and its effect on the deformation process of concrete[J]. Engineering Mechanics, 2013, 30(6):183-190.(in Chinese)
[10] 金浏, 张仁波, 杜修力. 力学损伤混凝土热传导行为细观研究[J]. 工程力学, 2018, 35(2):84-91. Jin Liu, Zhang Renbo, Du Xiuli. Meso-scale investigation on thermal conduction behavior in concrete with mechanical damage[J] Engineering Mechanics, 2018, 35(2):84-91. (in Chinese)
[11] 高彦芳, 陈勉, 林伯韬, 等. 多相非饱和多重孔隙介质的有效应力定律[J]. 工程力学, 2019, 36(1):32-43. Gao Yanfang, Chen Mian, Lin Botao, et al. Generalized effective stress law for multi-porosity media unsaturated with multiphase fluids[J]. Engineering Mechanics, 2019, 36(1):32-43. (in Chinese)
[12] Ghabezloo S. A micromechanical model for the effective compressibility of sandstones[J]. European Journal of Mechanics A/Solids, 2015, 51:140-153.
[13] David E C, Zimmerman R W. Elastic moduli of solids containing spheroidal pores[J]. International Journal of Engineering Science, 2011, 49(7):544-560.
[14] Cheng A D. Material coefficients of anisotropic poroelasticity[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(2):199-205.
[15] 阚晋, 王建祥. 一种孔隙介质力学模型及在水泥基材料的应用[J]. 力学学报, 2012, 44(6):1066-1070. Kan Jin, Wang Jianxiang. A mechanical model of porous media and it's application in cement materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6):1066-1070. (in Chinese)
[16] 蔡新树, 陈勉, 金衍, 等. 各向异性多重孔隙介质有效应力定律[J]. 工程力学, 2009, 26(4):57-60. Cai Xinshu, Chen Mian, Jin Yan, et al. An effective stress law for anisotropic multi-porosity media[J]. Engineering Mechanics, 2009, 26(4):57-60. (in Chinese)
[17] 张宏. 热弹塑性孔隙介质固结问题研究[J]. 岩石力学与工程学报, 2000, 19(增刊):845-848. Zhang Hong. Analysis on consolidation of poremedia of thermo-elasto-plasticity[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(Suppl):845-848. in Chinese)
[18] Jiang Yimin, Liu Mario. Granular solid hydrodynamics[J]. Granular Matter, 2009, 11(3):139-156.
[19] Jiang Yimin, Itai Einav, Liu Mario. A thermodynamic treatment of partially saturated soils revealing the structure of effective stress[J]. Journal of the Mechanics and Physics of Solids, 2017, 100:131-146.
[20] Zhang Z C, Cheng X H. Effective stress in saturated soil:a granular solid hydrodynamics approach[J]. Granular Matter, 2014, 16(5), 761-769.
[21] Zhang Z C, Cheng X H. A fully coupled THM model based on a non-equilibrium thermodynamic approach and its application[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(4):527-554.
[22] Einav, Itai, Liu Mario. Hydrodynamic derivation of the work input to fully and partially saturated soils[J]. Journal of the Mechanics and Physics of Solids, 2018, 110:205-217.
[23] Boutéca M, Sarda J P. Experimental measurements of thermoporoelastic coefficients[J]. Mechanics of Porous Media, 1995:31-41.
[1] 魏慧, 吴涛, 杨雪, 刘喜. 纤维增韧轻骨料混凝土单轴受压应力-应变全曲线试验研究[J]. 工程力学, 2019, 36(7): 126-135,173.
[2] 周茗如, 卢国文, 王腾, 王晋伟. 结构性黄土劈裂注浆力学机理分析[J]. 工程力学, 2019, 36(3): 169-181.
[3] 钟铭. 既有结构混凝土累积损伤原位评估方法[J]. 工程力学, 2018, 35(S1): 278-286.
[4] 姚仰平, 田雨, 刘林. 三维各向异性砂土UH模型[J]. 工程力学, 2018, 35(3): 49-55.
[5] 郑山锁, 程明超, 宋哲盟, 马德龙. 酸雨对再生骨料混凝土实心砖砌体抗压性能影响试验研究[J]. 工程力学, 2017, 34(2): 94-101.
[6] 王成龙, 刘汉龙, 孔纲强, 吴迪. 不同埋管形式下能量桩热力学特性模型试验研究[J]. 工程力学, 2017, 34(1): 85-91.
[7] 张泷, 刘耀儒, 杨强, 吕庆超. 基于不可逆内变量热力学的岩石材料粘弹-粘塑性本构方程[J]. 工程力学, 2015, 32(9): 34-41.
[8] 金生吉,李忠良,张健,王艳苓. 玄武岩纤维混凝土腐蚀条件下抗冻融性能试验研究[J]. 工程力学, 2015, 32(5): 178-183.
[9] 魏亚,姚湘杰. 早龄期水泥混凝土拉伸徐变实测与模型[J]. 工程力学, 2015, 32(3): 104-109.
[10] 倪海江,徐卫亚,石安池,徐建荣,吉华. 基于离散元的柱状节理岩体等效弹性模量尺寸效应研究[J]. 工程力学, 2015, 32(3): 90-96.
[11] 吕岩松, 郭日修. 计算加肋轴对称组合壳塑性极限载荷的缩减弹性模量有限元法[J]. 工程力学, 2014, 31(增刊): 171-176,176.
[12] 李响, 谢剑, 吴洪海. 超低温环境下混凝土本构关系试验研究[J]. 工程力学, 2014, 31(增刊): 195-200.
[13] 胡小玲, 刘秀, 李明, 罗文波. 炭黑填充橡胶超弹性本构模型的选取策略[J]. 工程力学, 2014, 31(5): 34-42.
[14] 黄拳章, 强洪夫, 郑小平, 姚振汉. 混合夹杂问题的边界元法[J]. 工程力学, 2014, 31(11): 17-24.
[15] 王军祥, 姜谙男. 完全隐式返回映射算法对岩土地基问题的求解[J]. 工程力学, 2013, 30(8): 83-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日