工程力学 ›› 2019, Vol. 36 ›› Issue (7): 184-196.doi: 10.6052/j.issn.1000-4750.2018.06.0309

• 土木工程学科 • 上一篇    下一篇

火灾后钢管RPC柱近距离爆炸残余承载力研究

邹慧辉1, 陈万祥1,2, 郭志昆1, 周子欣1   

  1. 1. 陆军工程大学爆炸冲击防灾减灾国家重点实验室, 南京 210007;
    2. 中山大学土木工程学院, 广州 510275
  • 收稿日期:2018-06-03 修回日期:2018-10-24 出版日期:2019-07-06 发布日期:2019-07-06
  • 通讯作者: 陈万祥(1977-),男,广东高州人,副教授,博士,硕导,主要从事工程结构抗冲击爆炸效应研究(E-mail:cwx_0806@sohu.com). E-mail:cwx_0806@sohu.com
  • 作者简介:邹慧辉(1993-),男,江西鹰潭人,博士生,主要从事工程结构抗冲击爆炸效应研究(E-mail:15298379640@163.com);郭志昆(1963-),男,江西湖口人,教授,博士,博导,主要从事抗冲击爆炸新材料研究(E-mail:gzkemail@sina.com);周子欣(1994-),男,湖南湘潭人,硕士生,主要从事工程结构抗冲击爆炸效应研究(E-mail:313881450@qq.com).
  • 基金资助:
    国家自然科学基金项目(51378498,51578541);江苏省自然科学基金项目(BK20141066)

Experimental studies on residual carrying-capacities of fire and blast-damaged RPC-FST columns

ZOU Hui-hui1, CHEN Wan-xiang1,2, GUO Zhi-kun1, ZHOU Zi-xin1   

  1. 1. State Key Laboratory of Disaster Prevention & Mitigation of Explosion & Impact, Army Engineering University of PLA, Nanjing 210007, China;
    2. School of Civil Engineering, Sun Yat-Sen University, Guangzhou 510275, China
  • Received:2018-06-03 Revised:2018-10-24 Online:2019-07-06 Published:2019-07-06

摘要: 对梁-柱构件的轴向力和侧向爆炸荷载进行适当简化,提出了一种基于等效单自由度方法的近距离爆炸分析模型。首先对标准火灾和爆炸作用后的钢管活性粉末混凝土(Reactive Powder Concrete Filled Steel Tubular,简称钢管RPC)柱初始挠度进行估算,然后结合钢管混凝土统一理论给出残余承载力计算公式并对钢管RPC柱的爆炸损伤进行评估。通过大比例模型试验研究了标准火灾后钢管RPC柱的近距离爆炸残余承载力,分析受火时间和爆炸比例距离对残余承载力和破坏形态的影响。结果表明:理论计算结果与试验数据吻合较好,验证了该文计算模型的可靠性。钢管RPC柱的残余承载力损失范围为16%~67%,火灾和爆炸作用对钢管RPC柱承载力产生了不同程度的毁伤,且残余承载力对受火时间更为敏感。其中,仅受火105 min的钢管RPC柱承载力下降60%,而仅遭受爆炸作用的承载力下降16%;经历火灾作用再遭受爆炸荷载的钢管RPC柱承载力损失高达67%。对5根钢管RPC柱进行爆炸损伤评估: 1根为轻度破坏,2根为中度破坏,2根为重度破坏,表明钢管RPC柱具有良好的抗火性能和抗爆性能。

关键词: 标准火灾, 爆炸荷载, 钢管RPC柱, 残余承载力, 试验研究

Abstract: An equivalent Single-Degree-of-Freedom (SDOF) model is developed to predict the residual carrying-capacities of fire-damaged Reactive Powder Concrete-Filled Steel Tubular (RPC-FST) columns under axial lateral blast loadings. The initial deflections of fire and blast-damaged RPC-FST columns are derived by the proposed SDOF model, then the residual carrying-capacities and damage levels are further obtained based on the unified theory of Concrete-Filled Steel Tubular (CFST) members. The residual carrying-capacities of fire and blast-damaged RPC-FST columns are investigated by a series of large-scale blast-resistant tests, in which the influences of scale standoff distance and fire duration on residual carrying-capacities and failure modes are discussed. Experimental results show that the analytical results of residual load capacities and damage indexes are well validated by experimental data. The residual carrying-capacities of RPC-FST columns decreased by 16%-67%, it means that the carrying-capacities would seriously degraded by fire and blast attacks, but it is more sensitive to fire duration than that to blast loading. It is indicated that the residual carrying-capacities of RPC-FST columns only experienced 105 min fire attack decrease by 60%, and only suffered blast loading decrease by 16%.However, the residual carrying-capacities of RPC-FST column suffered fire attack and following blast load would decrease by 67%. The damaged assessments of 5 RPC-FST columns indicate that one specimen is lightly damaged, two specimens are moderately damaged, and two specimens are severely damaged, respectively. The good performance for the fire- and blast- resistances of RPC-FST columns are experimentally verified.

Key words: standard fire, blast loading, Reactive Powder Concrete Filled Steel Tubular columns, residual carrying-capacities, experiment study

中图分类号: 

  • TU398.9
[1] 谢建. 力和高温共同作用下钢管混凝土短柱力学性能分析[D]. 北京:清华大学硕士论文, 2008. Xie Jian. Analysis on concrete filled steel tubular stub column under combined heating and loading[D]. Beijing:Tsinghua University, 2008. (in Chinese)
[2] Yousuf M, Uy B, Tao Z, et al. Transverse impact resistance of hollow and concrete filled stainless steel columns[J]. Journal of Constructional Steel Research, 2013, 82:177-189.
[3] 朱翔, 陆新征, 杜永峰, 等. 新型复合柱抗冲击试验研究及有限元分析[J]. 工程力学, 2016, 33(8):158-166, 220. Zhu Xiang, Lu Xinzheng, Du Yongfeng, et al. Experimental study and finite element analysis of impact resistance of novel composite columns[J]. Engineering Mechanics, 2016, 33(8):158-166, 220. (in Chinese)
[4] 孙珊珊, 赵均海, 贺拴海, 等. 爆炸荷载下钢管混凝土墩柱的动力响应研究[J]. 工程力学, 2018, 35(5):27-35, 74. Sun Shanshan, Zhao Junhai, He Quanhai, et al. Dynamic response of concrete-filled steel tube piers under blast loadings[J]. Engineering Mechanics, 2018, 35(5):27-35, 74. (in Chinese)
[5] Richard P, Cheyrezy M. Composition of reactive powder concrete[J]. Cement and Concrete Research, 1995, 25(7):1501-1511.
[6] 郑文忠, 吕雪源. 活性粉末混凝土研究进展[J]. 建筑结构学报, 2015, 36(10):44-58. Zheng Wenzhong, Lü Xueyuan. Literature review of reactive powder concrete[J]. Journal of Building Structures, 2015, 36(10):44-58. (in Chinese)
[7] GBT 31387-2015, 活性粉末混凝土[S]. 北京:中国标准出版社, 2015. GBT 31387-2015, Reactive powder concrete[S]. Beijing:China Code Press, 2015. (in Chinese)
[8] 蔡绍怀. 现代钢管混凝土结构(修订版)[M]. 北京:中国交通出版社, 2007. Cai Shaohuai. Modern steel tube confined concrete structures[M]. Beijing:China Communications Press, 2007. (in Chinese)
[9] 李业学, 谢和平, 彭琪, 等. 活性粉末混凝土力学性能及基本构件设计理论研究进展[J]. 力学进展, 2011, 41(1):51-59. Li Yexue, XieHeping, Peng Qi, et al. Progress in mechanic property and design theory of elementary structure of reactive powder concrete[J]. Advances in Mechanics, 2011, 41(1):51-59.
[10] 韩林海, 宋天诣, 谭清华. 钢-混凝土组合结构抗火设计原理研究[J]. 工程力学, 2011, 28(增刊2):54-66. Han Linhai, Song Tianyi, Tan Qinghua. Fire resistance design of steel-concrete composite structures[J]. Engineering Mechanics, 2011, 28(Suppl 2):54-66. (in Chinese)
[11] 韩林海. 钢管混凝土结构:理论与实践[M]. 北京:科学出版社, 2004. Han Linhai. Concrete-filled steel tubular structures theory and practice[M]. Beijing:The Science Press, 2004. (in Chinese)
[12] 闫志刚, 张武奇, 安明喆. 圆钢管RPC短柱轴心受压极限承载力分析[J]. 北京工业大学学报, 2011, 37(3):361-367. Yan Zhigang, Zhang Wuqi, An Mingzhe. Analysis of ultimate loading capacity for circular RPC-filled steel tube stub columns under axial compression[J]. Journal of Bejing University of Technology, 2011, 37(3):361-367. (in Chinese)
[13] 曾建仙. 钢管RPC偏压长柱的受力性能研究[D]. 福州:福州大学, 2005. Zeng Jianxian. Researches on behavior of eccentrically loaded slender column of circular steel tube RPC[D]. Fuzhou:Fuzhou University, 2005. (in Chinese)
[14] 何远明, 霍静思, 陈柏生. 高温下钢管混凝土SHPB动态力学性能试验研究[J]. 工程力学, 2013, 30(1):52-58. He Yuanming, Huo Jingsi, Chen Baisheng. Impact tests on dynamic behavior of concrete-filled steel tube at elevated temperatures[J]. Engineering Mechanics, 2013, 30(1):52-58. (in Chinese)
[15] 王立闻, 庞宝君, 陈勇, 等. 高温处理后活性粉末混凝土动力行为及本构模型研究[J]. 高压物理学报, 2012, 26(4):361-368. Wang Liwen, Pang Baojun, Chen Yong, et al. Study on dynamic mechanical behavior and constitutive model of reactive powder concrete after exposure in high temperature[J]. Chinese Journal of High Pressure Physics, 2012, 26(4):361-368. (in Chinese)
[16] 姜猛, 陈万祥, 郭志昆, 等. 火灾后钢管RPC抗冲击压缩特性与极限强度计算[J]. 工程力学, 2017, 34(5):216-225. Jiang Meng, Chen Wanxiang, Guo Zhikun, et al. Impact behaviors and ultimate strengths of RPC-FST after exposure to high temperature[J]. Engineering Mechanics, 2017, 34(5):216-225. (in Chinese)
[17] 李国强, 瞿海雁, 杨涛春, 等. 钢管混凝土柱抗爆性能试验研究[J]. 建筑结构学报, 2013, 34(12):69-76. Li Guoqiang, Qu Haiyan, Yang Taochun, et al. Experimental study of concrete-filled steel tubular columns under blast loading[J]. Journal of Building Structures, 2013, 34(12):69-76. (in Chinese)
[18] 王宏伟, 吴成清, 杨立燥, 等. 足尺钢管混凝土柱爆炸作用后残余承载力试验研究[J]. 建筑结构学报, 2016, 37(5):155-161. Wang Hongwei, Wu Chengqing, Yang Lizao, et al.Experimental research on residual bearing capacity of full-scaleconcrete-filled steel tubular column after explosion[J]. Journal of Building Structures, 2016, 37(5):155-161. (in Chinese)
[19] 陈万祥, 郭志昆, 邹慧辉, 等. 标准火灾后钢管RPC柱抗近距离爆炸荷载的试验研究[J]. 工程力学, 2017, 34(1):180-191. Chen Wanxiang, Guo Zhikun, Zou Huihui, et al. Near-field blast-resistant test of reactive powder concrete filled steel tubular column after exposure to standard fire[J]. Engineering Mechanics, 2017, 34(1):180-191. (in Chinese)
[20] Nassr A A, Ghani R A, Tait M J, et al. Strength and stability of steel beam columns under blast load[J]. International Journal of Impact Engineering, 2013, 55:34-48.
[21] Remennikov A M, Uy B. Explosive testing and modeling of square tubular steel columns for near-field detonations[J]. Journal of Constructional Steel Research, 2014, 101:290-303.
[22] Timoshenko S. Theory of elastic stability[M]. New York:McGraw-Hill Inc., 1961.
[23] Chen W X, Guo Z Z, Zhang T, et al. Near-field blast test on reactive powder concrete-filled steel tubular columns after exposure to fire[J]. International Journal of Protective Structures, 2016, 7(2):193-212.
[24] Henrych J. The dynamics of explosion and its use[M]. New York:Elsevier, 1979.
[25] Eurocode 4. Design of steel and concrete structures. Part1.1:General rules and rules for building[S]. Brussels (Belgium):European Committee for Standardization, 1994.
[26] USDOD. Structures to resist the effects of accidental explosions[R]. Document No. UFC 3-340-02. Washington, DC:US Department of Defense (USDOD), 2008.
[27] Han Linhai. Flexural behaviour of concrete-filled steel tubes[J]. Journal of Constructional Steel Research, 2004, 60(2):313-337.
[28] 林震宇, 吴炎海, 沈祖炎. 圆钢管活性粉末混凝土轴压力学性能研究[J]. 建筑结构学报, 2005, 26(4):52-57. Lin Zhenyu, Wu Yanhai, Shen Zuyan. Research on behavior of RPC filled circular steel tube column subjected to axial compression[J]. Journal of Building Structures, 2005, 26(4):52-57. (in Chinese)
[29] 李国豪. 工程结构抗爆动力学[M]. 上海:上海科学技术出版社, 1985. Li Guohao. Anti-explosion dynamics of engineering structure[M]. Shanghai:Shanghai Science and Technology Press, 1985. (in Chinese)
[30] 方秦, 柳锦春. 地下防护结构[M]. 北京:清华大学出版社, 2003. Fang Qing, Liu Jinchun. Underground protective structure[M]. Beijing:Tsinghua University Press, 2003. (in Chinese)
[31] 任晓虎, 霍静思, 陈柏生. 高温后钢管混凝土短柱落锤动态冲击试验研究[J]. 振动与冲击, 2011, 30(11):67-73. Ren Xiaohu, Huo Jingsi, Chen Baisheng. Dynamic behaviors of concrete-filled steel tubular stub columns after exposure to high temperature[J]. Journal of Vibration and Shock, 2011, 30(11):67-73. (in Chinese)
[32] 吴波. 火灾后钢筋混凝土结构的力学性能[M]. 北京:科学出版社, 2003. Wu Bo. Mechanical properties of reinforced concrete structures after fire[M]. Beijing:The Science Press, 2003. (in Chinese)
[33] 李海艳, 郑文忠, 罗百福. 高温后RPC立方体抗压强度退化规律研究[J]. 哈尔滨工业大学学报, 2012, 44(4):17-22. Li Haiyan, Zheng Wenzhong, Luo Baifu. Experimental research on compressive strength degradation of reactive powder concrete after high temperature[J]. Journal of Harbin Institute of Technology, 2012, 44(4):17-22. (in Chinese)
[34] 郑文忠, 王睿, 王英. 活性粉末混凝土热工参数试验研究[J]. 建筑结构学报, 2014, 35(9):107-114. Zheng Wenzhong, Wang Rui, Wang Ying. Experimental study on thermal parameter of reactive powder concrete[J]. Journal of Building Structures, 2014, 35(9):107-114. (in Chinese)
[35] Guo Z Z, Chen W X, Zhang T, et al. Post fire blast-resistances of RPC-FST columns using improved Grigorian model[J]. International Journal of Impact Engineering, 2017, 107:80-95.
[36] 师燕超. 爆炸荷载作用下钢筋混凝土结构的动态响应行为与损伤破坏机理[D]. 天津:天津大学, 2009:76-77. Shi Yanchao. Dynamic response and damage modes of reinforced concrete columns under blast loading[D]. Tianjin:Tianjin University, 2009:76-77. (in Chinese)
[1] 班慧勇, 白日升, 刘明, 李文斌, 白音. 钛-钢复合钢材力学性能及本构模型研究[J]. 工程力学, 2019, 36(7): 57-66.
[2] 杨勇, 薛亦聪, 于云龙. 预制装配型钢混凝土梁受剪承载力试验与计算方法研究[J]. 工程力学, 2019, 36(6): 92-100.
[3] 于云龙, 杨勇, 薛亦聪, 刘亚平, 蒋雪雅. 型钢混凝土空腹叠合梁受剪承载力试验研究[J]. 工程力学, 2019, 36(3): 214-223.
[4] 徐明雪, 梁兴文, 于婧, 李林. UHPC梁短期刚度理论与试验研究[J]. 工程力学, 2019, 36(1): 146-154,164.
[5] 丁杰, 邹昀, 蔡鑫, 李天祺, 郑黎君, 赵桃干. 损伤可控型钢框架边节点的试验研究[J]. 工程力学, 2018, 35(S1): 107-112.
[6] 齐欣, 许浒, 余志祥, 赵雷, 孟庆成. 柔性拦截结构中减压环动态力学性能试验研究[J]. 工程力学, 2018, 35(9): 188-196.
[7] 施刚, 王珣, 高阳, 张勇. 国产低屈服点钢材循环加载试验研究[J]. 工程力学, 2018, 35(8): 30-38.
[8] 吴志军, 张鹏林, 刘泉声, 李万峰, 江维中. 基于零厚度粘聚力单元的钢筋混凝土板在爆炸荷载下的动态破坏过程分析[J]. 工程力学, 2018, 35(8): 79-90,110.
[9] 孟宝, 钟炜辉, 郝际平. 基于节点刚度的钢框架梁柱子结构抗倒塌性能试验研究[J]. 工程力学, 2018, 35(6): 88-96.
[10] 刘希月, 王元清, 石永久, 谭清华. 高强度钢框架梁柱节点焊接构造的断裂性能试验研究[J]. 工程力学, 2018, 35(5): 54-64.
[11] 管宇, 周绪红, 卫世杰, 石宇. 冷弯薄壁型钢组合楼盖振动性能及静力挠度研究[J]. 工程力学, 2018, 35(5): 131-142.
[12] 李天, 晁进涛, 樊嘉. 等腰三角形空间桁架自由扭转理论分析和试验研究[J]. 工程力学, 2018, 35(5): 223-230,238.
[13] 杨青顺, 甄伟, 陆新征, 解琳琳, 林楷奇. 带端部阻尼器伸臂桁架的抗震性能试验研究[J]. 工程力学, 2018, 35(2): 47-58.
[14] 杜新喜, 胡锐, 袁焕鑫, 程晓燕, 宗亮. 混合配筋预应力混凝土管桩抗剪性能试验研究[J]. 工程力学, 2018, 35(12): 71-80.
[15] 杨璐, 宁克洋, 班慧勇, 赵梦晗. 不锈钢焊接箱形截面压弯构件弯曲屈曲试验研究[J]. 工程力学, 2018, 35(12): 143-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日