工程力学 ›› 2019, Vol. 36 ›› Issue (8): 70-78.doi: 10.6052/j.issn.1000-4750.2018.06.0307

• 土木工程学科 • 上一篇    下一篇

超高性能混凝土梁正截面受弯承载力理论研究

徐明雪1,2, 梁兴文1, 汪萍1, 王照耀1   

  1. 1. 西安建筑科技大学土木工程学院, 陕西, 西安 710055;
    2. 成都基准方中建筑设计有限公司, 四川, 成都 610000
  • 收稿日期:2018-06-03 修回日期:2018-10-31 出版日期:2019-08-25 发布日期:2019-08-10
  • 通讯作者: 梁兴文(1952-),男,陕西人,教授,硕士,博导,主要从事土木工程新材料及其应用研究(E-mail:liangxingwen2000@163.com). E-mail:liangxingwen2000@163.com
  • 作者简介:徐明雪(1991-),男,江苏人,硕士生,主要从事土木工程新材料结构应用研究(E-mail:Xumingxue1991@163.com);汪萍(1992-),女,安徽人,硕士生,主要从事土木工程新材料结构应用研究(E-mail:337565854@qq.com);王照耀(1992-),男,陕西人,硕士生,主要从事土木工程新材料结构应用研究(E-mail:wangzhaoyao1992@163.com).
  • 基金资助:
    国家自然科学基金项目(51278402)

THEORETICAL INVESTIGATION ON NORMAL SECTION FLEXURAL CAPACITY OF UHPC BEAMS

XU Ming-xue1,2, LIANG Xing-wen1, WANG Ping1, WANG Zhao-yao1   

  1. 1. College of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China;
    2. Chengdu JZFZ Architectural Design Co., Ltd., Chengdu, Sichuan 610000, China
  • Received:2018-06-03 Revised:2018-10-31 Online:2019-08-25 Published:2019-08-10

摘要: 基于64组超高性能混凝土(ultra high performance concrete, UHPC)抗压性能试验数据,分别建立了峰值压应变ε0、立方体抗压强度fcu与轴心抗压强度fc之间的关系以及弹性模量Ec与立方体抗压强度fcu的关系;基于复合材料力学,建立了受拉区UHPC等效拉应力;基于平截面假定,建立了UHPC梁正截面受弯承载力计算公式,推导了受压区等效矩形应力图形参数、计算公式,并结合UHPC受压本构确定等效矩形应力图形参数。通过28根试验梁的相关数据,验证UHPC梁正截面受弯承载力计算公式及等效矩形应力图形参数取值的可行性。研究结果表明,等效矩形应力图形参数取值较为合理,梁正截面受弯承载力计算值与试验值吻合良好。

关键词: 超高性能混凝土, 复合材料力学, 等效矩形应力图形, 平截面假定, 正截面受弯承载力

Abstract: The relationships among peak compressive strain, cube compressive strength, elastic modulus, and axial compressive strength were established respectively based on 64 groups of Ultra High Performance Concrete (UHPC) compressive test data. The equivalent tensile strength of UHPC in the tensile zone was deduced through the mechanics of composite materials. Based on the plane section assumption, the formula for calculating normal-section flexural capacity of UHPC beams and the parameters of an equivalent rectangular stress block of UHPC in the compressive zone were deduced and the equivalent rectangular strength was calculated with the UHPC compressive constitutive relationship. Based on the data of 28 test beams, the feasibility of calculating the flexural capacity and the parameters of equivalent rectangular stress block was verified. The results show that the parameters of an equivalent rectangular stress block are reasonable and the calculated results of the normal-section flexural capacity of UHPC beams are in a good agreement with the experimental ones.

Key words: ultra high performance concrete, mechanics of composite materials, equivalent rectangular stress block, plane section assumption, normal section flexural capacity

中图分类号: 

  • TU375.1
[1] Rossi P. Ultra high performance fiber reinforced concretes[J]. Concrete International, 2001, 23(6):1216-1221.
[2] Voo Y L, Foster S J. Characteristics of ultra high performance "ductile" concrete and its impact on sustainable construction[J]. Ies Journal Part A Civil & Structural Engineering, 2010, 3(3):168-187.
[3] Makita T, Brühwiler E. Tensile fatigue behaviour of ultra-high performance fibre reinforced concrete (UHPFRC)[J]. Materials & Structures, 2014, 47(3):475-491.
[4] Yi N H, Kim J H J, Han T S, et al. Blast-resistant characteristics of ultra-high strength concrete and reactive powder concrete[J]. Construction & Building Materials, 2012, 28(1):694-707.
[5] 邓明科, 卜新星, 潘姣姣, 等. 型钢高延性混凝土短柱抗震性能试验研究[J]. 工程力学, 2017, 34(1):163-170. Deng Mingke, Bu Xinxing, Pan Jiaojiao, et al. Experimental study on seismic behavior of steel reinforced high ductile concrete short columns[J]. Engineering Mechanics, 2017, 34(1):163-170. (in Chinese)
[6] 赖建中, 朱耀勇, 谭剑敏. 超高性能混凝土在埋置炸药下的抗爆试验及数值模拟[J]. 工程力学, 2016, 33(5):193-199. Lai Jianzhong, Zhu Yaoyong, Tan Jianmin. Experimental and simulation of ultra-high performance concrete subjected to blast by embedded explosive[J]. Engineering Mechanics, 2016, 33(5):193-199. (in Chinese)
[7] 郑文忠, 卢姗姗, 李莉. GFRP筋活性粉末混凝土梁受力性能试验研究[J]. 建筑结构学报, 2011, 32(6):115-124. Zheng Wenzhong, Lu Shanshan, Li Li. Experimental research on mechanical performance of reactive powder concrete beams reinforced with GFRP bars[J]. Journal of Building Structures, 2011, 32(6):115-124. (in Chinese)
[8] 李莉. 活性粉末混凝土梁受力性能及设计方法研究[D]. 哈尔滨:哈尔滨工业大学, 2010. Li Li. Mechanical behavior and design method for reactive powder concrete beams[D]. Harbin:Harbin Institute of Technology, 2010. (in Chinese)
[9] 王文雷. RPC预应力梁相关设计参数研究[D]. 北京:北京交通大学, 2006. Wang Wenlei. Investigation on design parameters of RPC prestressed beam[D]. Beijing:Beijing Jiaotong University, 2006. (in Chinese)
[10] 金凌志, 何来, 吴欣珂. HRB500级钢筋活性粉末混凝土梁受弯性能试验研究[J]. 建筑结构, 2015, 45(15):87-92. Jin Lingzhi, He Lai, Wu Xinke. Experimental study on flexural property of reactive powder concrete beams with HRB500 steel[J]. Building Structure, 2015, 45(15):87-92. (in Chinese)
[11] Singh M, Sheikh A H, Ali M S M, et al. Experimental and numerical study of the flexural behaviour of ultra-high performance fibre reinforced concrete beams[J]. Construction & Building Materials, 2017, 138(Complete):12-25.
[12] 杨志慧. 不同钢纤维掺量活性粉末混凝土的抗拉力学特性研究[D]. 北京:北京交通大学, 2006. Yang Zhihui. Investigation on tensile properties of reactive powder concrete with different content of steel fiber[D]. Beijing:Beijing Jiaotong University, 2006. (in Chinese)
[13] 金凌志, 李月霞, 付强. 不同掺合料掺量的活性粉末混凝土抗压强度试验[J]. 河南科技大学学报(自然科学版), 2014(5):55-62. Jin Lingzhi, Li Yuexia, Fu Qiang. Experimental study on compressive strength of Reactive Powder Concrete with different additives[J]. Journal of Henan University of Science and Technology (Natural Science), 2014(5):55-62. (in Chinese)
[14] 曾建仙, 吴炎海, 林清. 掺钢纤维活性粉末混凝土的受压力学性能研究[J]. 福州大学学报(自然科学版), 2005, 33(增刊1):132-137. Zeng Jianxian, Wu Yanhai, Lin Qing. Researches on the compressive mechanics properties of steel fiber RPC[J]. Journal of Fuzhou University (Natural Science), 2005, 33(suppl 1):132-137. (in Chinese)
[15] 焦楚杰, 孙伟, 秦鸿根, 等. 钢纤维高强混凝土单轴受压本构方程[J]. 东南大学学报(自然科学版), 2004, 34(3):366-369. Jiao Chujie, Sun Wei, Qin Honggen, et al. Constitutive equation of SFRHSC under uniaxial compression[J]. Journal of Southeast University (Natural Science Edition), 2004, 34(3):366-369. (in Chinese)
[16] 吴炎海, 何雁斌, 杨幼华. 活性粉末混凝土(RPC200)的力学性能[J]. 福州大学学报(自然科学版), 2003, 31(5):598-602. Wu Yanhai, He Yanbin, Yang Youhua. Investigation on RPC200 mechanical performance[J]. Journal of Fuzhou University (Natural Science), 2003, 31(5):598-602. (in Chinese)
[17] 徐朦. 多种钢纤维对超高性能混凝土力学性能影响的比较研究[D]. 北京:北京交通大学, 2014. Xu Meng. Comparative study on influences of various steel fibers on mechanical properties of ultra-high performance concrete(UHPC)[D]. Beijing:Beijing Jiaotong University, 2014. (in Chinese)
[18] GB 50010-2010,混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture Industry Press, 2010. (in Chinese)
[19] Hognestad E. Concrete stress distribution in ultimate strength design[J]. Journal of the American Concrete Institute, 1955, 52(6):455-479.
[20] Jones R M, Bert C W. Mechanics of composite materials[M]. Blacksburg:Scripta Book Co, 1975.
[21] 李志武, 许金余, 张国喜, 等. 利用纤维增强机理对纤维临界体积率的理论推导[C]//海峡两岸三地混凝土技术研讨会. 南京:东南大学出版社, 2010. Li Zhiwu, Xu Jinyu, Zhang Guoxi, et al. The theoretical deduction of critical fiber volume quantity using the mechanism of fiber reinforced concrete[C]//Seminar on Concrete Technology in Three Places Across the Taiwan Straits. NanJing:Southeast University Press, 2010. (in Chinese)
[22] Abrishambaf A, Pimentel M, Nunes S. Influence of fibre orientation on the tensile behaviour of ultra-high performance fibre reinforced cementitious composites[J]. Cement & Concrete Research, 2017, 97:28-40.
[23] Ali H M, Hamad L N T. First diagonal cracking and ultimate shear of reactive powder concrete T-beams without stirrups[J]. Journal of Engineering and Development, 2014, 18(5):149-164.
[24] Al-Hassani H M, Khalil W I, Danha L S. Prediction of the nominal bending moment capacity for plain and singly reinforced rectangular RPC beam sections[J]. Engineering and Technology Journal, 2015, 33(5):1113-1130.
[25] 邓宗才, 王义超, 肖锐, 等. 高强钢筋UHPC梁抗弯性能试验研究与理论分析[J]. 应用基础与工程科学学报, 2015, 23(1):68-78. Deng Zongcai, Wang Yichao, Xiao Rui, et al. Flexural test and theoretical analysis of UHPC beams with high strength rebars[J]. Journal of Basic Science and Engineering, 2015, 23(1):68-78. (in Chinese)
[26] 曹霞, 常婧, 王艳俊. 高强钢筋RPC梁受弯构件正截面承载力试验研究[J]. 河南理工大学学报(自然科学版), 2015, 34(1):109-115. Cao Xia, Chang Jing, Wang Yanjun. Experimental study on flexural capacity of normal section of high strength reinforced reactive powder concrete beam[J]. Journal of Henan Polytechnic University (Natural Science), 2015, 34(1):109-115. (in Chinese)
[1] 李聪, 陈宝春, 黄卿维. 超高性能混凝土圆环约束收缩试验研究[J]. 工程力学, 2019, 36(8): 49-58.
[2] 梁兴文, 王莹, 于婧, 李林. 预制UHPC模板及采用预制模板的RC板受力性能及承载力分析[J]. 工程力学, 2019, 36(7): 146-155.
[3] 梁兴文, 汪萍, 徐明雪, 王照耀, 于婧, 李林. 配筋超高性能混凝土梁受弯性能及承载力研究[J]. 工程力学, 2019, 36(5): 110-119.
[4] 王景全, 王震, 高玉峰, 诸钧政. 预制桥墩体系抗震性能研究进展:新材料、新理念、新应用[J]. 工程力学, 2019, 36(3): 1-23.
[5] 徐明雪, 梁兴文, 于婧, 李林. UHPC梁短期刚度理论与试验研究[J]. 工程力学, 2019, 36(1): 146-154,164.
[6] 张文华, 张云升, 陈振宇. 超高性能混凝土抗缩比钻地弹侵彻试验及数值仿真[J]. 工程力学, 2018, 35(7): 167-175,186.
[7] 刘君平, 徐帅, 陈宝春. 钢-UHPC组合梁与钢-普通混凝土组合梁抗弯性能对比试验研究[J]. 工程力学, 2018, 35(11): 92-98,145.
[8] 杨简, 陈宝春, 沈秀将, 林毅焌. UHPC单轴拉伸试验狗骨试件优化设计[J]. 工程力学, 2018, 35(10): 37-46,55.
[9] 郑延丰, 罗尧治. 基于有限质点法的多尺度精细化分析[J]. 工程力学, 2016, 33(9): 21-29.
[10] 赖建中, 朱耀勇, 谭剑敏. 超高性能混凝土在埋置炸药下的抗爆试验及数值模拟[J]. 工程力学, 2016, 33(5): 193-199.
[11] 钟轶峰, 周小平, 张亮亮. 压电圆柱棒基于变分渐近法的广义Timoshenko模型[J]. 工程力学, 2014, 31(10): 14-20.
[12] 聂建国,丁然,樊健生. 超高层建筑伸臂桁架-核心筒剪力墙节点受力性能数值与理论研究[J]. 工程力学, 2014, 31(1): 46-55.
[13] 王 鹏,周东华,王永慧,陈 旭,李龙起. 腹板开洞钢-混凝土组合梁抗剪承载力试验研究[J]. 工程力学, 2013, 30(3): 297-305.
[14] 解其铁 张王丽 蒋天元 许 杰 闫智民 李玉顺. 钢-竹组合柱轴心受压性能的试验研究[J]. 工程力学, 2012, 29(增刊Ⅱ): 221-225.
[15] 张程华, 黄炜, 赵冬, 张荫, 侯莉娜. 基于复合材料力学模型的生态复合墙体研究[J]. 工程力学, 2012, 29(8): 249-254.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨健辉;宋玉普;赵东拂;邹小理. 双侧压下混凝土静态受拉与受拉疲劳性能研究[J]. 工程力学, 2005, 22(6): 134 -141 .
[2] 马辉, 李三只, 李哲, 王振山, 梁炯丰. 型钢再生混凝土柱-钢梁组合框架节点抗剪承载力研究[J]. 工程力学, 2018, 35(7): 176 -186 .
[3] 徐强, 郑山锁, 商校瑀. 近海大气环境作用下钢框架节点时变地震损伤研究[J]. 工程力学, 2019, 36(1): 61 -69 .
[4] 宋二祥, 仝睿, 罗爽, 李鹏. 路基土体“时变覆盖效应”的数值模拟分析[J]. 工程力学, 2019, 36(8): 30 -39 .
[5] 徐龙河, 杨雪飞. 自复位支撑-钢框架结构直接基于位移的支撑参数设计与分析[J]. 工程力学, 2019, 36(8): 141 -148 .
[6] 乔崎云, 杨兆源, 牟犇, 刘倩倩. 外环板式高低梁-方钢管柱节点弹塑性剪切承载力计算[J]. 工程力学, 2019, 36(8): 192 -200,209 .
[7] 李国强, 张卫国, 黄霞, 王勋年. 翼型动态风洞试验洞壁效应研究[J]. 工程力学, 2019, 36(8): 235 -247 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日