工程力学 ›› 2019, Vol. 36 ›› Issue (S1): 175-183.doi: 10.6052/j.issn.1000-4750.2018.05.S036

• 土木工程学科 • 上一篇    下一篇

碱激发矿粉海水海砂混凝土与CFRP筋粘结性能研究

徐金金1, 杨树桐1, 刘治宁2   

  1. 1. 中国海洋大学工程学院土木工程系, 山东, 青岛 266100;
    2. 青岛海大建设工程检测鉴定中心, 山东, 青岛 266100
  • 收稿日期:2018-05-02 修回日期:2018-11-23 出版日期:2019-06-18 发布日期:2019-06-18
  • 通讯作者: 杨树桐(1979-),男,山东人,教授,博士,主要从事混凝土断裂力学、新型混凝土材料的理论与试验研究(E-mail:shutongyang2013@163.com). E-mail:shutongyang2013@163.com
  • 作者简介:徐金金(1994-),女,山东人,硕士生,主要从事碱激发混凝土力学性能研究(E-mail:1311996541@qq.com);刘治宁(1984-),男,山东人,中级建筑材料本科,材料检测员,主要从事混凝土鉴定检测工作(E-mail:38778557@qq.com).
  • 基金资助:
    国家自然科学基金项目(51778591)

STUDY ON THE BOND PERFORMANCE BETWEEN CFRP BARS AND ALKALI-ACTIVATED SLAG SEAWATER AND SEA SAND CONCRETE

XU Jin-jin1, YANG Shu-tong1, LIU Zhi-ning2   

  1. 1. Department of Civil Engineering, College of Engineering, Ocean University of China, Qingdao, Shandong 266100, China;
    2. Qingdao Ocean University Construction Engineering Testing and Appraisal Center, Qingdao, Shandong 266100, China
  • Received:2018-05-02 Revised:2018-11-23 Online:2019-06-18 Published:2019-06-18

摘要: 该文通过试验分析研究了碱激发矿粉海水海砂混凝土与碳纤维筋(Carbon Fiber Reinforced Polymer)筋的粘结性能。分别考虑了碱激发矿粉淡水河砂混凝土(FRASC)、碱激发矿粉淡水海砂混凝土(FSASC)、碱激发矿粉海水河砂混凝土(SRASC)和碱激发矿粉海水海砂混凝土(SSASC)四种碱激发矿粉混凝土(ASC),并与钢筋的粘结性能进行了对比。试验中分别采用直径为8 mm的CFRP筋和HRB400带肋钢筋,粘长分别为2.5 d、5 d、7.5 d、10 d和15 dd为筋的直径)。结果表明:粘长为15 d的试件,CFRP筋的试件全部劈裂破坏,钢筋粘长为10 d、15 d的试件全部为钢筋拉断破坏;粘长为2.5 d的CFRP筋试件将筋表面的脱模带拉断而出现第二个峰值;粘结滑移曲线可分为微滑移阶段、滑移阶段、剥离阶段、软化阶段和残余阶段。

关键词: 建筑材料, 碱激发矿粉混凝土, 拉拔试验, 粘结性能, 破坏形态

Abstract: To study the bond performance between CFRP bars and alkali-activated slag seawater and sea sand concrete, pull-out tests were carried out for 200 specimens with different types of bars (CFRP bars and steel bars), different bond lengths (2.5 d, 5 d, 7.5 d, 10 d and 15 d) and four types of concrete including fresh water and river sand alkali-activated slag concrete (FRASC), fresh water and sea sand alkali-activated slag concrete (FSASC), seawater and river sand alkali-activated slag concrete (SRASC) and seawater and sea sand alkali-activated slag concrete (SSASC). In the test, all specimens with CFRP bars and bonding lengths of 15 d exhibited splitting failure of the concrete, whereas those with steel bars and bond lengths of 10 d and 15 d exhibited tensile fracture of the steel bars. The loading stage for the specimens with CFRP bars and bond lengths of 2.5 d has a second peak because the external bundle band of the CFRP bars was snapped. The bond-slip curve can be divided into five stages, that is, the micro slip stage, slide stage, stripping stage, softening stage and residual stage.

Key words: building materials, alkali-activated slag concrete, pull test, bond performance, failure mode

中图分类号: 

  • TU377.9+4
[1] 史才军, 巴维尔·克利文科, 黛拉·罗伊. 碱-激发水泥和混凝土[M]. 北京:化学工业出版社, 2006. Shi Caijun, Krivenko P, Roy D. Alkali-activated cements and concretes[M]. Beijing:Chemical Industry Press, 2006. (in Chinese)
[2] Wang S D, Scrivener K L. Hydration products of alkali activated slag cement[J]. Cement and Concrete Research, 1995, 25(3):561-571.
[3] Yang C H, Wu F, Chen K. Research on set retarder of high and super high strength alkali -activated slag cement and concrete[J]. Key Engineering Materials, 2011, 477:164-169.
[4] Bilek V, Hurta J, Done P, et al. Development of alkali-activated concrete for structures-Mechanical properties and durability[J]. Perspectives in Science, 2016, 7:190-194.
[5] Zhang J, Shi C J, Zhang Z H, et al. Durability of alkali-activated materials in aggressive environments:A review on recent studies[J]. Construction and Building Materials, 2017, 152:598-613.
[6] 姜正平, 明维. 碱激发矿渣蒸压混凝土中钢筋早期锈蚀状况[J]. 建筑材料学报, 2016, 21(2):222-227. Jiang Zhengping, Ming Wei. Early corrosion behavior of steel bars embedded in the autoclave cured alkaliactivated slag concrete[J]. Journal of Building Materials, 2016, 21(2):222-227. (in Chinese)
[7] 施锦杰, 邓晨皓, 张亚梅. 钢筋在碱激发矿渣砂浆中的早起腐蚀行为[J]. 建筑材料学报, 2016, 19(6):969-975. Shi Jinjie, Deng Chenhao, Zhang Yamei. Early corrosion behavior of rebars enbedded in the alkali-activated slag mortar[J]. Journal of Building Materials, 2016, 19(6):969-975. (in Chinese)
[8] Li Y L, Zhao X L, Raman Singh R K, et al. Thermal and mechanical properties of alkali-activated slag paste, mortar and concrete utilising seawater and sea sand[J]. Construction and Building Materials, 2018, 159:704-724.
[9] Ravikumar D, Neithalath N. Electrically induced chloride ion transport in alkali activated slag concretes and the influence of microstructure[J]. Cement and Concrete Research, 2013, 47(5):31-42.
[10] Li Y L, Zhao X L, Raman Singh R K, et al. Experimental study on seawater and sea sand concrete filled GFRP and stainless steel tubular stub columns[J]. Thin-Walled Structures, 2016, 106:390-406.
[11] Li Y L, Zhao X L, Raman Singh R K, et al. Tests on seawater and sea sand concrete-filled CFRP, BFRP and stainless steel tubular stub columns[J]. Thin-Walled Structures, 2016, 108:163-184.
[12] Wang Z, Zhao X L, Xian G, et al, Durability study on interlaminar shear behaviour of basalt-, glass- and carbon-fibre reinforced polymer (B/G/CFRP) bars in sea water sea sand concrete environment[J]. Construction and Building Materials, 2017, 156:985-1004.
[13] Wang Z, Zhao X L, Xian G, et al. Long-term durability of basalt-and glass-fibre reinforced polymer (BFRP/GFRP) bars in seawater and sea sand concrete environment[J]. Construction and Building Materials, 2017, 139:467-487.
[14] Castel A, Foster S J. Bond strength between blended slag and Class F fly ash geopolymer concrete with steel reinforcement[J]. Cement and Concrete Research, 2015, 72:48-53.
[15] Bilek V, Bonczková S, Hurta J, et al. Bond strength between reinforcing steel and different types of concrete[J]. Procedia Engineering, 2017, 190:243-247.
[16] Laskar S M, Talukdar S. Preparation and tests for workability, compressive and bond strength of ultra-fine slag based geopolymer as concrete repairing agent[J]. Construction and Building Materials, 2017, 154:176-190.
[17] Tekle B H, Khennane A, Kayali O. Bond behaviour of GFRP reinforcement in alkali activated cement concrete[J]. Construction and Building Materials, 2017, 154:972-982.
[18] Tekle B H, Khennane A, Kayali O. Bond of spliced GFRP reinforcement bars in alkali activated cement concrete[J]. Engineering Structures, 2017, 147:740-751.
[1] 崔兆彦, 徐明, 陈忠范, 王飞. 重组竹钢夹板螺栓连接承载力试验研究[J]. 工程力学, 2019, 36(1): 96-103,118.
[2] 纪晓东, 程小卫, 徐梦超. 小剪跨比钢筋混凝土墙拉剪性能试验研究[J]. 工程力学, 2018, 35(S1): 53-61.
[3] 杨超, 杨树桐, 戚德海. BFRP筋与珊瑚混凝土粘结性能试验研究[J]. 工程力学, 2018, 35(S1): 172-180.
[4] 陈俊, 张白, 杨鸥, 蒋恩浩. 微锈蚀钢筋混凝土高温后粘结锚固性能试验研究[J]. 工程力学, 2018, 35(10): 92-100.
[5] 薛建阳, 董金爽, 隋龑, 刘祖强. 附设粘滞阻尼器的传统风格建筑混凝土双枋-柱节点抗震性能分析[J]. 工程力学, 2018, 35(1): 98-108.
[6] 曹芙波, 唐磊杰, 丁兵兵, 王晨霞. 冻融损伤后钢筋与再生混凝土黏结滑移性能试验研究[J]. 工程力学, 2017, 34(增刊): 244-251.
[7] 刘静雅, 霍静思, 刘艳芝. CFRP约束高温后混凝土力学性能试验研究[J]. 工程力学, 2017, 34(9): 158-166.
[8] 牛建刚, 郝吉, 孙立斌, 李伯潇. 塑钢纤维轻骨料混凝土与钢筋粘结锚固试验研究[J]. 工程力学, 2017, 34(2): 42-49.
[9] 郭诗惠, 孔搏, 蔡春声, 张建仁, 曾学. GFRP-混凝土组合板界面抗剪连接性能的试验研究[J]. 工程力学, 2017, 34(2): 216-225.
[10] 吴涛, 刘全威, 成然, 刘喜. 钢筋套筒灌浆连接性能试验研究及筒壁应力分析[J]. 工程力学, 2017, 34(10): 68-75.
[11] 罗征, 王银辉, 袁伟东, 胡晓佳. SRC组合加固铰缝疲劳性能试验[J]. 工程力学, 2016, 33(增刊): 161-167.
[12] 杨惠贤, 黄炎生, 李静. 纤维增强水泥基复合材料的动力拉伸性能研究[J]. 工程力学, 2016, 33(7): 144-150.
[13] 白晓宇, 张明义, 寇海磊. 基于裸光纤光栅传感技术GFRP抗浮锚杆荷载传递机制的原位试验研究[J]. 工程力学, 2015, 32(8): 172-181.
[14] 闫长旺, 杨勇, 贾金青, 张菊, 刘曙光. 钢骨超高强混凝土框架节点恢复力模型[J]. 工程力学, 2015, 32(12): 154-160.
[15] 孟刚, 贾金青, 朱伟庆. 预应力型钢超高强混凝土梁抗弯性能试验研究[J]. 工程力学, 2014, 31(5): 203-210.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日