工程力学 ›› 2019, Vol. 36 ›› Issue (S1): 149-153.doi: 10.6052/j.issn.1000-4750.2018.05.S028

• 土木工程学科 • 上一篇    下一篇

FRP加固混凝土梁粘结层剪应力分析

刘兴喜, 徐荣桥   

  1. 浙江大学建筑工程学院, 浙江, 杭州 310058
  • 收稿日期:2018-05-02 修回日期:2018-12-08 出版日期:2019-06-18 发布日期:2019-06-18
  • 通讯作者: 徐荣桥(1972-),男,浙江人,教授,博士,主要从事组合桥梁结构、桥梁FRP加固等方面的研究(E-mail:xurongqiao@zju.edu.cn). E-mail:xurongqiao@zju.edu.cn
  • 作者简介:刘兴喜(1989-),男,湖北人,博士生,主要从事桥梁加固方面的研究(E-mail:xingxiliu@zju.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51478422)

INTERFACIAL SHEAR STRESS IN FRP-STRENGTHENED RC BEAMS

LIU Xing-xi, XU Rong-qiao   

  1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, Zhejiang 310058, China
  • Received:2018-05-02 Revised:2018-12-08 Online:2019-06-18 Published:2019-06-18

摘要: 外贴FRP以提高混凝土结构抗弯承载力的加固技术的有效性在很大程度上取决于混凝土梁与FRP板之间的界面行为,这也是过去很多研究的重点。特别是针对FRP加固混凝土梁粘结层剪应力提出了很多解析解,但是这些研究很少适用于不对称荷载情形。该文运用最小余能原理得到了FRP加固简支混凝土梁粘结层剪应力分布的解析公式。此公式不仅适用于对称荷载作用的情形,还适用于两端支座处作用不等弯矩这种荷载情形。通过与已有结果进行比较,验证了该文方法的正确性。

关键词: 加固, FRP, 混凝土梁, 最小余能原理, 粘结层剪应力

Abstract: The use of externally bonded fiber reinforced polymer (FRP) laminates for the flexural strengthening of concrete structures is a technique that has become very popular. The effectiveness of this technique hinges heavily on the performance of the bond between the strengthening plate and the substrate, which has been the subject of many existing studies. In particular, the interfacial shear stress between a beam and a soffit plate has been addressed by numerous analytical investigations. Surprisingly, few of these investigations has examined the interfacial shear stress for beams under asymmetrical loads. This paper presents an explicit solution for interfacial shear stress in a simply supported beam bonded with a thin plate using minimum excess principle. The beam can be subjected to a uniform distributed load and unequal moments at both ends. The analytical solution is verified by comparing its predictions with those available in the literature.

Key words: strengthening, FRP, RC beams, minimum excess principle, interfacial shear stress

中图分类号: 

  • TU599
[1] 赵彤, 谢剑. 碳纤维布补强加固混凝土结构新技术[M]. 天津:天津大学出版社, 2001:3-4. Zhao Tong, Xie Jian. New technology on strengthening of reinforced concrete structures using carbon fiber sheet[M]. Tianjin:Tianjin University Press, 2001:3-4. (in Chinese)
[2] Bonacci J F, Maalej M. Behavioral trends of RC beams strengthened with externally bonded FRP[J]. Journal of Composites for Construction, 2001, 5(5):102-113.
[3] Yang J, Ye J, Niu Z. Simplified solutions for the stress transfer in concrete beams bonded with FRP plates[J]. Engineering Structures, 2008, 30(2):533-545.
[4] Vilnay O. The analysis of reinforced concrete beams strengthened by epoxy bonded steel plates[J]. International Journal of Cement Composites & Lightweight Concrete, 1988, 10(2):73-78.
[5] Roberts T M. Approximate analysis of shear and normal stress concentrations in the adhesive layer of plated RC beams[J]. Structural Engineer, 1989, 67(12):229-233.
[6] Roberts T M, Hajikazemi H. Theoretical study of the behaviour of reinforced concrete beams strengthened by externally bonded steel plates[J]. Ice Proceedings, 2015, 87(1):39-55.
[7] 刘祖华, 朱伯龙. 粘钢加固混凝土梁的解析分析[J]. 同济大学学报(自然科学版), 1994(1):21-26. Liu Zuhua, Zhu Bolong. Analytical solutions for R/C beams strengthened by externally bonded steel plates[J]. Journal of Tongji University (Natural Science), 1994, 22(1):21-26. (in Chinese)
[8] Smith S T, Teng J G. Interfacial stresses in plated beams[J]. Engineering Structures, 2001, 23(7):857-871.
[9] Rabinovich O, Frostig Y. Closed-form high-order analysis of RC beams strengthened with FRP strips[J]. Journal of Composites for Construction, 2000, 4(2):65-74.
[10] Shen H S, Teng J G, Yang J. Interfacial stresses in beams and slabs bonded with thin plate[J]. Journal of Engineering Mechanics, 2001, 127(4):399-406.
[11] Yang J, Chen J F, Teng J G. Interfacial stresses in soffit-plated reinforced concrete beams[J]. Structures & Buildings, 2004, 157(1):77-89.
[12] Yang J, Wu Y F. Interfacial stresses of FRP strengthened concrete beams:Effect of shear deformation[J]. Composite Structures, 2007, 80(3):343-351.
[13] Xu R Q, Wu Y F. Analytical study of beams strengthened by adhesively bonded reinforcement with variable properties using state space method[J]. Composites Science & Technology, 2009, 69(11):1912-1918.
[14] Xu R Q, Liu C. CZM-based debonding simulation of cracked beams strengthened by FRP sheets[J]. Journal of Engineering Mechanics, 2012, 138(2):210-220.
[1] 何栋尔, 章子华, 肖云逸, 罗威, 单艳玲. CFRP-火灾后混凝土界面快速剥离试验[J]. 工程力学, 2019, 36(S1): 285-292,297.
[2] 苏庆田, 王思哲, 薛智波, 张春雷, 王倩, 陈亮. 卸载程度对钢桁梁桥主桁构件加固效果的影响[J]. 工程力学, 2019, 36(S1): 92-97,105.
[3] 万军. 碳纤维布加固砌体填充墙抗近距离小当量炸药爆炸实验研究[J]. 工程力学, 2019, 36(S1): 293-297.
[4] 杨勇, 薛亦聪, 于云龙. 预制装配型钢混凝土梁受剪承载力试验与计算方法研究[J]. 工程力学, 2019, 36(6): 92-100.
[5] 卜一之, 金通, 李俊, 张清华. 纵肋与横隔板交叉构造细节穿透型疲劳裂纹扩展特性及其加固方法研究[J]. 工程力学, 2019, 36(6): 211-218.
[6] 邓明科, 李彤, 樊鑫淼. 高延性混凝土加固砖柱轴压性能试验研究[J]. 工程力学, 2019, 36(5): 92-99.
[7] 任振华, 曾宪桃, 孙浚博. 内嵌CFRP筋加固宽缺口混凝土梁内力解析与试验研究[J]. 工程力学, 2019, 36(4): 117-124.
[8] 朱健, 赵均海, 谭平, 金建敏. 基于CFRP加固的钢混排架厂房全寿命周期地震成本研究[J]. 工程力学, 2019, 36(2): 141-153.
[9] 曹亮, 张海燕, 吴波. 纤维编织网增强地聚物砂浆加固钢筋混凝土梁受剪性能研究[J]. 工程力学, 2019, 36(1): 207-215.
[10] 杨超, 杨树桐, 戚德海. BFRP筋与珊瑚混凝土粘结性能试验研究[J]. 工程力学, 2018, 35(S1): 172-180.
[11] 罗威, 肖云逸, 何栋尔, 章子华. 快速荷载下CFRP-高温后混凝土界面正拉粘结性能试验[J]. 工程力学, 2018, 35(S1): 307-312,324.
[12] 张建仁, 肖林发, 彭建新, 唐皇. U型箍加固锈蚀RC梁的抗弯性能试验研究及数值分析[J]. 工程力学, 2018, 35(8): 111-121.
[13] 武启剑, 王臣, 支旭东. 玻璃纤维增强短钢管构件轴压试验和破坏模式仿真研究[J]. 工程力学, 2018, 35(8): 184-191.
[14] 余波, 陈冰, 唐睿楷. 钢筋混凝土梁抗剪承载力计算的概率模型[J]. 工程力学, 2018, 35(5): 170-179.
[15] 邓明科, 张阳玺, 胡红波. 高延性混凝土加固钢筋混凝土柱抗剪承载力计算[J]. 工程力学, 2018, 35(3): 159-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日