工程力学 ›› 2019, Vol. 36 ›› Issue (S1): 44-53.doi: 10.6052/j.issn.1000-4750.2018.05.S006

• 土木工程学科 • 上一篇    下一篇

附设粘滞阻尼器的混凝土仿古建筑梁-柱节点恢复力模型试验研究

隋䶮1,3,4,5, 薛建阳1,3,4,5, 董金爽2, 张锡成1,3,4,5, 谢启芳1,3,4,5, 白福玉1,3,4,5   

  1. 1. 西安建筑科技大学土木工程学院, 西安 710055;
    2. 海南大学建筑工程学院, 海口 570228;
    3. 土木工程国家级实验教学示范中心, 西安 710055;
    4. 土木工程国家级虚拟仿真实验教学示范中心, 西安 710055;
    5. 结构工程与抗震教育部重点实验室, 西安 710055
  • 收稿日期:2018-05-23 修回日期:2019-01-21 出版日期:2019-06-30 发布日期:2019-06-18
  • 通讯作者: 隋?(1978-),男,黑龙江人,高工,博士,主要从事古建筑抗震保护及仿古建筑结构抗震性能研究(E-mail:suiyanmyy@163.com). E-mail:suiyanmyy@163.com
  • 作者简介:薛建阳(1970-),男,河南人,教授,博士,博导,主要从事组合结构抗震,古建筑及仿古建筑结构抗震性能研究(E-mail:jianyang_xue@163.com);董金爽(1989-),男,山东人,讲师,博士,主要从事组合结构抗震研究(E-mail:mlcxll@163.com);张锡成(1984-),男,山东人,讲师,博士,主要从事古建筑抗震保护研究(E-mail:westlife840615@163.com);谢启芳(1978-),男,江西人,副教授,博士,主要从事古建筑抗震保护研究(E-mail:nacy.xie@163.com);白福玉(1985-),男,黑龙江人,工程师,硕士,主要从事古建筑抗震保护研究(E-mail:398408775@qq.com).
  • 基金资助:
    国家自然科学基金项目(51208411,51508454);陕西省自然科学基础研究基金项目(2016JQ5060);陕西省科学技术研究发展计划项目(2013KW23-01);陕西省教育厅科研计划项目(15JK1444)

THE EXPERIMENTAL RESEARCH ON THE RESTORING FORCE MODEL OF LINTEL-COLUMN JOINTS OF CONCRETE ARCHAIZING BUILDINGS WITH VISCOUS DAMPERS

SUI Yan1,3,4,5, XUE Jian-yang1,3,4,5, DONG Jin-shuang2, ZHANG Xi-cheng1,3,4,5, XIE Qi-fang1,3,4,5, BAI Fu-yu1,3,4,5   

  1. 1. School of Civil Engineering, Xi′an University of Architecture and Technology, Xi'an 710055, China;
    2. College of Civil Engineering and Architecture of Hainan University, Haikou 570228, China;
    3. National Level Civil Engineering Experimental Teaching Demonstration Center, Xi'an University of Architecture and Technology, Xi'an 710055, China;
    4. National Level Civil Engineering Virtual Simulation Experimental Teaching Demonstration Center, Xi'an University of Architecture and Technology, Xi'an 710055, China;
    5. Key Lab of Structural Engineering and Earthquake Resistance, Ministry of Education, Xi'an 710055, China
  • Received:2018-05-23 Revised:2019-01-21 Online:2019-06-30 Published:2019-06-18

摘要: 为了研究附设粘滞阻尼器的混凝土仿古建筑梁柱节点的恢复力模型,设计制作了4个试件,进行了快速动力加载试验,对试件的受力过程和破坏形态进行观察和记录。基于对试件在受力过程中表现出的典型特征的研究,并考虑加载动力效应,提出了试验试件的四折线骨架曲线模型及恢复力模型,并将其与试验结果进行了对比分析。研究结果表明:试件的从开始加载到最终发生破坏可分成开裂、屈服、极限、破坏4个阶段。试件从屈服阶段开始,随着加载的进行产生了明显的加载和卸载刚度退化及卸载残余变形;提出了四折线骨架曲线模型,其结果与试验结果的骨架曲线吻合度较高;并采用所提出的四折线恢复力模型计算得到了滞回曲线,将其变化趋势与试验滞回曲线的进行对比可以发现二者具有较高相似度,该模型可以较好地描述附设粘滞阻尼器的混凝土仿古建筑梁柱节点的滞回性能。

关键词: 混凝土仿古建筑, 粘滞阻尼器, 骨架曲线, 恢复力模型, 动力荷载

Abstract: To study the restoring force model of the concrete archaizing buildings with lintel-column joints and viscous dampers, four specimens were fabricated and tested under dynamic loading. The loading process was observed and failure modes were recorded. Four-line models of skeleton curves and restoring force models considering the dynamic effects of loading are presented based on the research of typical characteristics of the specimens under loading, and are compared with the experimental results. The results show that the loading process of the specimens can be summarized by four stages of initial cracking, yielding, ultimate and failure. As the load continues, the loading and unloading stiffness degenerate obviously after the stage of yielding. The residual deformation appears in the hysteretic curves after unloading. The presented four-line models of skeleton curves agree well with the experimental results. By using the proposed four-fold restoring force model, the hysteretic curve is calculated and compared with the experimental hysteretic curves in terms of the change trend. It can be found that the two have high similarity. The hysteretic behavior of the concrete archaizing buildings with lintel-column joints and viscous dampers is described better by the four-line restoring force model.

Key words: concrete archaizing buildings, viscous damper, skeleton curve, restoring force model, dynamic loading

中图分类号: 

  • TU311
[1] 田永复. 中国仿古建筑构造[M]. 北京:化学工业出版社, 2010:63-64. Tian Yongfu. Chinese antique architecture[M]. Beijing:Chemical Industry Press, 2010:63-64. (in Chinese)
[2] 谢磊. 仿古建筑在园林中的应用研究[D]. 杭州:浙江农林大学, 2006. Xie Lei. The application of antique architecture in gardens[D]. Hangzhou:Zhejiang Agriculture and Forestry University, 2006. (in Chinese)
[3] 谢启芳, 李朋, 隋龑. 传统风格钢筋混凝土梁-柱节点抗剪理论分析与抗剪承载力计算[J]. 建筑结构, 2014, 19(10):81-86. Xie Qifang, Li Peng, Sui Yan. Shear mechanism analysis and shear capacity calculation of the RC column-beam joint built in traditional style[J]. Building Structure. 2014, 19(10):81-86. (in Chinese)
[4] 赵忠虎, 谢和平, 许博, 等. 钢筋混凝土压弯构件恢复力特性研究状况[J]. 工业建筑, 2006, 36(1):62-65. Zhao Zhonghu, Xie Heping, Xu Bo, et al. Present status of research on Characteristics of restoring force of RC compression-flexure member[J]. Industrial Building, 2006, 36(1):62-65. (in Chinese)
[5] 郭子雄, 杨勇. 恢复力模型研究现状及存在问题[J]. 世界地震工程, 2004, 20(4):47-51. Guo Zixiong, Yang Yong. State of the art of restoring force models for RC structures[J]. World Earthquake Engineering, 2004, 20(4):47-51. (in Chinese)
[6] Rodrigues H, Romao X, Andrade-Campos A. Simplified hysteretic model for the representation of the biaxial bending response of RC columns[J]. Engineering Structures, 2012, 44:146-158.
[7] 殷小溦, 吕西林, 卢文胜. 配置十字型钢的型钢混凝土柱恢复力模型[J]. 工程力学, 2014, 31(1):97-103. Yin Xiaowei, Lv Xilin, Lu Wensheng. Resilience model of SRC columns with cross-shaped encase steel[J]. Engineering Mechanics, 2014, 31(1):97-103. (in Chinese)
[8] 董三升, 赵均海, 雷自学, 等. 高强混凝土加芯柱恢复力特性研究[J]. 中国公路学报, 2012, 25(4):90-96. Dong Sansheng, Zhao Junhai, Lei Zixue, et al. Research on the restoring force of hing-strengthened concrete columns with central reinforcement.[J]. China Road Press, 2012, 25(4):90-96. (in Chinese)
[9] 周长东, 田腾, 吕西林, 等. 预应力碳纤维条带加固混凝土圆形墩柱恢复力模型试验研究[J]. 工程力学,2013, 30(2):125-134. Zhou Changdong, Tian Teng, Lv Xilin, et al. Experimental study on restoring force model of circular RC piers strengthened with pre-stressed CFRP belts. Engineering Mechanics. 2013, 30(2):125-134. (in Chinese)
[10] Sivaselvan M V, Reinhorn A M. Hysteretic models for deteriorating inelastic structures[J]. Journal of Engineering Mechanics, 2000, 126(6):633-640.
[11] Li W, Han L H. Seismic performance of CFST column to steel beam joint with RC slab:Joint model[J]. Journal of Constructional Steel Research, 2012, 73:66-79.
[12] 曾磊, 许成祥, 郑山锁, 等. 型钢高强高性能混凝土框架节点P-Δ恢复力模型[J]. 武汉理工大学学报, 2012, 34(9):104-108. Zeng Lei, Xu Chengxiang, Zhen Shansuo, et al. Research on restoring force model of SRHSHPC frame joints[J]. Journal of Wuhan University of Technology, 2012, 34(9):104-108. (in Chinese)
[13] 马辉, 薛建阳, 张锡成, 等. 型钢再生混凝土组合柱四折线恢复力模型研究[J]. 建筑结构, 2015, 11(1):55-59. Ma Hui, Xue Jianyang, Zhang Xicheng, et al. Research on four broken line-model of steel reinforced recycled concrete composite columns[J]. Building Structure, 2015, 11(1):55-59. (in Chinese)
[14] Li M, Li H. Effects of strain rate on reinforced concrete structure under seismic loading[J]. Advances in Structural Engineering, 2012, 15(3):461-476.
[15] Zhang H, Li H N. Dynamic analysis of reinforced concrete structure with strain rate effect[J]. Materials Research Innovations, 2011, 15(S1):213-216.
[16] Nakamura K, Mizuno J, Matsuo I, et al. Effects of loading rate on reinforced concrete shear walls:part 1:dynamic properties of large-size rebars[C]//International Conference on Earthquake Resistant Engineering Structures. Catania, Italie:WIT Press, 2001:43-52.
[17] 陈俊名. 钢筋混凝土剪力墙动力加载试验及考虑应变率效应的有限元模拟[D]. 长沙:湖南大学, 2010:23-38. Chen Junming. The dynamic loading test of reinforced concrete shear walls and its finite element analysis considering strain rate effects[D]. Changsha:Hunan University, 2010:23-38. (in Chinese)
[18] 许宁. 快速加载下钢筋混凝土剪力墙性能试验及数值模拟研究[D]. 长沙:湖南大学, 2012:19-64. Xu Ning. Experiment study and numerical simulation on dynamic behavior of RC shear walls under rapid loading[D]. Changsha:Hunan University, 2012:19-64. (in Chinese)
[19] 梁思成. 工程做法则例图解[M]. 北京:清华大学出版社, 2006:50-54. Liang Sicheng. Engineering practice example of Qing Dynasty[M]. Beijing:Tsinghua University Press, 2006:50-54. (in Chinese)
[20] GB 50936-2014, 钢管混凝土结构技术规程[S]. 北京:中国建筑工业出版社, 2014. GB 50936-2014, Technical specification for concrete-filed steel tubular structures[S]. Beijing:China Architecture and Building Press, 2014. (in Chinese)
[21] GB/T 50081-2002, 普通混凝土力学性能试验方法标准[S]. 北京:中国建筑工业出版社, 2002. GB/T 50081-2002, Standard for test method of mechanical properties on ordinary concrete[S]. Beijing:China Architecture and Building Press, 2002. (in Chinese)
[22] GB/T 228-2002, 金属材料室温拉伸试验方法[S]. 北京:中国标准出版社, 2002. GB/T 228-2002, Metallic material tensile method of test at ambient temperature[S]. Beijing:Standards Press of China, 2002. (in Chinese)
[23] JGJ/T101-2015, 建筑抗震试验规程[S]. 北京:中国建筑工业出版社, 2015. JGJ/T101-2015, Specification for seismic test of buildings[S]. Beijing:China Architecture and Building Press, 2015. (in Chinese)
[24] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010, Specification for seismic design of buildings[S]. Beijing:China Architecture and Building Press, 2010. (in Chinese)
[25] GB/T 17742-2008, 中国地震烈度表[S]. 北京:中国建筑工业出版社, 2008. GB/T 17742-2008, The Chinese seismic intensity scale[S]. Beijing:China Architecture and Building Press, 2008. (in Chinese)
[26] Elnashai A S, Broderick B M, Dowling P J. Earthquake-resistant composite steel/concrete structure[J]. The Structural Engineer, 1995, 73(8):121-132.
[27] 叶正强, 李爱群, 娄宇. 粘滞流体阻尼器用于建筑结构的减震设计原理与方法[J]. 建筑结构, 2008, 38(8):87-90. Ye Zhengqiang, Li Aiqun, Lou Yu. Design principle and method of structural vibration energy dissipation using fluid viscous dampers[J]. Building Structure, 2008, 38(8):87-90. (in Chinese)
[1] 徐龙河, 孙雨生, 要世乾, 李忠献. 装配式自复位耗能支撑恢复力模型与试验验证[J]. 工程力学, 2019, 36(6): 119-127,146.
[2] 卢啸, 吕泉林. 自复位粘弹性腹杆的力学原理与滞回性能研究[J]. 工程力学, 2019, 36(6): 138-146.
[3] 黄宙, 李宏男, 付兴. 自复位放大位移型SMA阻尼器优化设计方法研究[J]. 工程力学, 2019, 36(6): 202-210.
[4] 常笑, 杨璐, 王萌, 尹飞. 循环荷载下奥氏体型和双相型不锈钢材料本构关系研究[J]. 工程力学, 2019, 36(5): 137-147.
[5] 曹琛, 郑山锁, 胡卫兵, 赵彦堂, 郑捷, 周炎. 近海大气环境下锈蚀RC框架梁恢复力模型研究[J]. 工程力学, 2019, 36(4): 125-134.
[6] 陈云, 陈超, 蒋欢军, 万志威, 刘涛. O型钢板-高阻尼黏弹性复合型消能器的力学性能试验与分析[J]. 工程力学, 2019, 36(1): 119-128.
[7] 崔瑶, 李浩, 刘浩, 王晶秋, 唐贞云. 外露式钢柱脚恢复力特性分析[J]. 工程力学, 2018, 35(7): 232-242.
[8] 范重, 刘云博, 王祥臻, 吴徽, 王义华. 连梁骨架曲线与滞回特性研究[J]. 工程力学, 2018, 35(6): 68-77,87.
[9] 韩强, 贾振雷, 王晓强, 黄超. 内嵌碟簧型自复位防屈曲支撑性能试验及其恢复力模型研究[J]. 工程力学, 2018, 35(6): 144-150,190.
[10] 郑山锁, 张晓辉, 赵旭冉, 刘毅. 近海大气环境下锈蚀钢框架梁抗震性能试验及恢复力模型研究[J]. 工程力学, 2018, 35(12): 98-106,115.
[11] 蔡小宁, 孟少平. 预应力自复位混凝土框架节点恢复力模型研究[J]. 工程力学, 2018, 35(1): 182-190,200.
[12] 徐龙河, 谢行思, 李忠献. 自复位变阻尼耗能支撑的力学原理与性能研究[J]. 工程力学, 2018, 35(1): 201-208.
[13] 王庆利, 牛献军, 冯立明. 圆CFRP-钢管混凝土压弯构件滞回性能的参数分析与恢复力模型[J]. 工程力学, 2017, 34(增刊): 159-166.
[14] 王斌, 郑山锁, 汪锋, 王帆. 考虑冻融损伤的钢筋混凝土框架节点恢复力模型研究[J]. 工程力学, 2017, 34(5): 105-115.
[15] 余波, 李长晋, 吴然立. 钢筋混凝土柱的非对称恢复力模型与参数识别[J]. 工程力学, 2017, 34(2): 153-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张慕宇;杨智春;王乐;丁燕. 复合材料梁结构损伤定位的无参考点互相关分析方法[J]. 工程力学, 2011, 28(11): 166 -169 .
[2] 王芳林;高伟;陈建军. 风荷激励下天线结构的随机振动分析[J]. 工程力学, 2006, 23(2): 168 -172 .
[3] 田杰;胡时胜. G50钢动态力学性能的实验研究[J]. 工程力学, 2006, 23(6): 107 -109, .
[4] 王焕定;付伟庆;刘文光;于德湖;程树良. 规则隔震结构等效简化模型的研究[J]. 工程力学, 2006, 23(8): 138 -143 .
[5] 李辉;丁桦;郑哲敏. 基于局部密集应变响应的海洋平台冰载荷反演方法[J]. 工程力学, 2006, 23(7): 185 -192 .
[6] 陈波;武岳;沈世钊. 大跨度屋盖结构等效静力风荷载背景分量的确定方法探讨[J]. 工程力学, 2006, 23(11): 21 -27 .
[7] 李忠献;刘永光. 基于虚拟裂缝模型求解混凝土等效断裂韧度的实用解析方法[J]. 工程力学, 2006, 23(11): 91 -98 .
[8] 童朝霞;张建民;张 嘎. 应力主轴旋转对波浪作用下堤防变形的影响分析[J]. 工程力学, 2009, 26(10): 67 -073 .
[9] 张元海;李 乔. 曲线箱梁考虑剪滞效应时的弯扭分析[J]. 工程力学, 2009, 26(10): 123 -129 .
[10] 周 岱;马 骏;李 磊. 流场和流固耦合问题网格剖分与更新的新方法[J]. 工程力学, 2009, 26(11): 10 -016 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日