工程力学 ›› 2019, Vol. 36 ›› Issue (6): 13-20.doi: 10.6052/j.issn.1000-4750.2018.05.0299

• 基本方法 • 上一篇    下一篇

基于滞变阻尼模型的时域计算方法

孙攀旭1, 杨红1,2, 赵雯桐1, 王志军1   

  1. 1. 重庆大学土木工程学院, 重庆 400045;
    2. 重庆大学山地城镇建设与新技术教育部重点实验室, 重庆 400045
  • 收稿日期:2018-05-31 修回日期:2018-10-24 出版日期:2019-06-25 发布日期:2019-05-31
  • 通讯作者: 杨红(1969-),男,浙江平湖人,教授,博士,博导,主要从事结构抗震设计理论与方法的研究(E-mail:yangh@cqu.edu.cn). E-mail:yangh@cqu.edu.cn
  • 作者简介:孙攀旭(1990-),男,河南许昌人,博士生,主要从事结构抗震设计与计算的研究(E-mail:sunpanxu@163.com);赵雯桐(1991-),女,河南郑州人,博士生,主要从事钢筋混凝土结构的抗震性能研究(E-mail:wentong21@163.com);王志军(1965-),男,四川人,教授,博士,博导,主要从事混凝土结构及组合结构理论研究(E-mail:zjwang@cqu.edu.cn).
  • 基金资助:
    国家重点研发计划项目(2016YFC0701506);重庆市研究生科研创新项目(CYB18036)

TIME DOMAIN CALCULATION METHOD BASED ON HYSTERETIC DAMPING MODEL

SUN Pan-xu1, YANG Hong1,2, ZHAO Wen-tong1, WANG Zhi-jun1   

  1. 1. School of Civil Engineering, Chongqing University, Chongqing 400045, China;
    2. Key Laboratory of New Technology for Construction of Cities in Mountain Area of the Ministry of Education, Chongqing University, Chongqing 400045, China
  • Received:2018-05-31 Revised:2018-10-24 Online:2019-06-25 Published:2019-05-31

摘要: 复阻尼时域运动方程的自由振动解中包含发散项,导致时域数值计算结果不能稳定收敛。在复阻尼模型的频域运动方程基础上可得到滞变阻尼模型的时域运动方程。针对滞变阻尼模型的特点,依据复平面法和地震加速度的三角级数表达式,该文提出了滞变阻尼模型的时域理论计算方法;假定时间步长内结构的振动响应为简谐振动响应,同时借助于常平均加速度法,提出了滞变阻尼模型的时域数值计算方法。算例分析表明,与复阻尼模型的时域数值计算方法相比,滞变阻尼模型的时域理论计算方法和时域数值计算方法可有效避免时域发散现象;滞变阻尼模型的时域理论计算结果和时域数值计算结果与复阻尼模型的频域计算结果近似相等,进一步证明了该文方法的正确性。

关键词: 复阻尼模型, 滞变阻尼模型, 时域法, 数值方法, 频域法

Abstract: The free vibration solution of a complex damping time domain motion equation contains divergent items which make the numerical results of the time domain divergent. Based on the frequency domain motion equation of a complex damping model, the hysteretic damping time domain motion equation can be obtained. According to the characteristics of a hysteretic damping model, the time domain theoretical calculation method of the hysteretic damping model is proposed based on the complex plane method and trigonometric series expression of earthquake acceleration records. It is assumed that the structural vibration response is a harmonic vibration response in a short time step. Based on the average acceleration method, the time domain numerical calculation method of the hysteretic damping model is proposed. The analysis results show that:compared with the time domain numerical method of a complex damping model, the two proposed methods can avoid the time domain divergence phenomena effectively. The time domain calculation results of the two proposed methods are approximately equal to the frequency domain calculation results of a complex damping model. The correctness of the two proposed methods is verified.

Key words: complex damping model, hysteretic damping model, time domain method, numerical method, frequency domain method

中图分类号: 

  • TU311.3
[1] Bert C W. Material damping:An introductory review of mathematical models, measures and experimental techniques[J]. Journal of Sound and Vibration, 1973, 29(2):129-135.
[2] Pan Y, Wang Y. Frequency-domain analysis of exponentially damped linear systems[J]. Journal of Sound and Vibration, 2013, 332(7):1754-1765.
[3] 朱敏, 朱镜清. 逐步积分法求解复阻尼结构运动方程的稳定性问题[J]. 地震工程与工程振动, 2001, 21(4):59-62.Zhu Min, Zhu Jingqing. Studies on stability of step-by-step methods under complex damping conditions[J]. Earthquake Engineering and Engineering Vibration, 2001, 21(4):59-62. (in Chinese)
[4] 张辉东, 王元丰, 江辉. 不同参数取值对复阻尼模型结构抗震性能的影响[J]. 建筑结构学报, 2009, 30(6):94-100. Zhang Huidong, Wang Yuanfeng, Jiang Hui. Effect of different parameters on seismic performance of complex damping structures[J]. Journal of Building Structures, 2009, 30(6):94-100. (in Chinese)
[5] 张辉东, 王元丰. 复阻尼模型结构地震时程响应研究[J]. 工程力学, 2010, 27(1):109-115. Zhang Huidong, Wang Yuanfeng. Study on seismic time-history response of structures with complex damping[J]. Engineering Mechanics, 2010, 27(1):109-115. (in Chinese)
[6] 潘玉华, 王元丰. 含复阻尼振动系统的逐步积分法稳定性研究[J]. 土木工程学报, 2010(增刊1):206-210. Pan Yuhua, Wang Yuanfeng. Stability of step-by-step methods in solving complex damping vibration systems[J]. China Civil Engineering Journal, 2010(Suppl 1):206-210. (in Chinese)
[7] 朱镜清, 朱敏. 复阻尼地震反应谱的计算方法及其它[J]. 地震工程与工程振动, 2000, 20(2):19-23. Zhu Jingqing, Zhu Min. Calculation of complex damping response spectra from earthquake records[J]. Earthquake Engineering and Engineering Vibration, 2000, 20(2):19-23. (in Chinese)
[8] 朱敏, 朱镜清. 复阻尼地震反应谱计算的再研究[J]. 地震工程与工程振动, 2001, 21(2):36-40. Zhu Min, Zhu Jingqing. Further studies on calculation of complex damping seismic response spectra[J]. Earthquake Engineering and Engineering Vibration, 2001, 21(2):36-40. (in Chinese)
[9] Kang J H. Hysterically damped free and forced vibrations of axial and torsional bars by a closed form exact method[J]. Journal of Sound and Vibration, 2016, 378:144-156.
[10] 何钟怡. 复本构理论中的对偶原则[J]. 固体力学学报, 1994, 15(2):177-180. He Zhongyi. The dual principle in theory of complex constitutive equations[J]. Chinese Journal of Solid Mechanics, 1994, 15(2):177-180. (in Chinese)
[11] 何钟怡, 廖振鹏, 王小华. 关于复阻尼理论的几点注记[J]. 地震工程与工程振动, 2002, 22(1):1-6. He Zhongyi, Liao Zhenpeng, Wang Xiaohua. Some notes on theory of complex damping[J]. Earthquake Engineering and Engineering Vibration, 2002, 22(1):1-6. (in Chinese)
[12] 周正华, 廖振鹏, 丁海平. 一种时域复阻尼本构方程[J]. 地震工程与工程振动, 1999, 19(2):38-44. Zhou Zhenghua, Liao Zhenpeng, Ding Haiping. A time-domain complex-damping constitutive equation[J]. Earthquake Engineering and Engineering Vibration, 1999, 19(2):38-44. (in Chinese)
[13] 胡海岩. 结构阻尼模型及系统时域动响应[J]. 振动工程学报, 1992, 5(1):8-15. Hu Haiyan. Structural damping modal and system dynamic response at time domain[J]. Journal of Vibration Engineering, 1992, 5(1):8-15. (in Chinese)
[14] Reggio A, Angelis M D. Modelling and identification of structures with rate-independent linear damping[J]. Meccanica, 2015, 50(3):617-632.
[15] Wang J. Rayleigh coefficients for series infrastructure systems with multiple damping properties[J]. Journal of Vibration and Control, 2015, 21(6):1234-1248.
[16] Inaudi J A, Kelly J M. Linear hysteretic damping and hilbert transform[J]. Journal of Engineering Mechanics, 1995, 121(5):626-632.
[17] Manikanahally D N, Crocker M J. Vibration analysis of hysteretically damped mass-loaded beams[J]. Journal of Sound and Vibration, 1989, 132(2):177-197.
[18] 李鸿晶, 王通, 廖旭. 关于法机理的一种解释[J]. 地震工程与工程振动, 2011, 31(2):55-62. Li Hongjing, Wang Tong, Liao Xu. An interpretation on Newmark beta methods in mechanism of numerical analysis[J]. Journal of Earthquake Engineering and Engineering Vibration, 2011, 31(2):55-62. (in Chinese)
[19] 周惠蒙, 吴斌, 王涛, 等. 基于速度的显式等效力控制方法的研究[J]. 工程力学, 2016, 33(6):15-22. Zhou Huimeng, Wu Bin, Wang Tao, et al. Explicit equivalent force control method based on velocity[J].. Engineering Mechanics, 2016, 33(6):15-22. (in Chinese)
[20] 潘玉华, 王元丰. 复阻尼结构动力方程的高斯精细时程积分法[J]. 工程力学, 2012, 29(2):16-20. Pan Yuhua, Wang Yuanfeng. Gauss precise time-integration of complex damping vibration systems[J]. Engineering Mechanics, 2012, 29(2):16-20. (in Chinese)
[21] 刘庆林,傅学怡. 基于复阻尼假定的不同材料阻尼特性混合结构抗震分析反应谱CCQC法[J]. 土木工程学报, 2011, 44(3):61-71. Liu Qinglin, Fu Xueyi. A response spectrum CCQC method for seismic analysis of structures of multiple material damping characteristics based on complex damping assumption[J]. China Civil Engineering Journal, 2011, 44(3):61-71. (in Chinese)
[22] Lage Y, Cachão H, Reis L, et al. A damage parameter for HCF and VHCF based on hysteretic damping[J]. International Journal of Fatigue, 2014, 62:2-9.
[1] 耿令波, 胡志强, 林扬, 衣瑞文, 王超. 尺度效应对水下合成射流推力特性影响研究[J]. 工程力学, 2017, 34(12): 219-228.
[2] 于庆磊, 杨天鸿, 唐世斌, 刘洪磊, 梁正召, 郑喜, 贾蓬. 基于CT的准脆性材料三维结构重建及应用研究[J]. 工程力学, 2015, 32(11): 51-62.
[3] 张志田, 谢先浩. 变增量扫频法求解结构随机风振响应[J]. 工程力学, 2014, 31(8): 101-107.
[4] 丁道红 章 青 . 材料非线性分析的自然单元法[J]. 工程力学, 2012, 29(增刊Ⅱ): 97-100.
[5] 魏 凯;伍勇吉;徐 灿;庞于涛;袁万城. 桥梁群桩基础-水耦合系统动力特性数值模拟[J]. 工程力学, 2011, 28(增刊I): 195-200.
[6] 茹忠亮;朱传锐;赵洪波. 基于水平集算法的扩展有限元方法研究[J]. 工程力学, 2011, 28(7): 20-025.
[7] 金 峰;胡 卫;张 冲;王进廷. 考虑弹塑性本构的三维模态变形体离散元方法断裂模拟[J]. 工程力学, 2011, 28(5): 1-007.
[8] 刘铁林;栾 宇;钟 伟. 二维粘弹性波数值模拟方法及北川县城震害分析[J]. 工程力学, 2010, 27(增刊I): 81-084,.
[9] 苏 成;徐 瑞. 非平稳激励下结构随机振动时域分析法[J]. 工程力学, 2010, 27(12): 77-083.
[10] 苏 成;黄志坚. 一种改进的大跨度桥梁抖振响应时域分析方法[J]. 工程力学, 2009, 26(9): 138-144.
[11] 李云良;田振辉;谭惠丰. 屈曲薄膜振动分析[J]. 工程力学, 2008, 25(11): 33-036,.
[12] 朱军华;;余 岭;;陈敏中;Chan T H T. 移动荷载识别的适用性研究[J]. 工程力学, 2007, 24(8): 0-036,.
[13] 荣见华;唐国金;罗银燕;杨端生. 考虑位移要求的大型三维连续体结构拓扑优化数值技术研究[J]. 工程力学, 2007, 24(3): 0-027,.
[14] 谢文会;唐友刚;周满红. 深水铰接塔平台的非线性动力特性分析[J]. 工程力学, 2006, 23(9): 36-41,1.
[15] 蔡健;何振强. 带约束拉杆方形钢管混凝土的本构关系[J]. 工程力学, 2006, 23(10): 145-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日