工程力学 ›› 2019, Vol. 36 ›› Issue (6): 239-247.doi: 10.6052/j.issn.1000-4750.2018.05.0297

• 土木工程学科 • 上一篇    下一篇

钢筋混凝土梁-板子结构抗连续性倒塌性能研究

钱凯, 李治, 翁运昊, 邓小芳   

  1. 广西大学土木建筑工程学院, 广西, 南宁 530004
  • 收稿日期:2018-05-31 修回日期:2019-02-16 出版日期:2019-06-25 发布日期:2019-05-31
  • 通讯作者: 邓小芳(1984-),女,湖北武汉人,讲师,工学博士,主要从事建筑抗倒塌方面研究(E-mail:xiaofang.deng@gxu.edu.cn). E-mail:xiaofang.deng@gxu.edu.cn
  • 作者简介:钱凯(1983-),男,浙江宁波人,教授,工学博士,博导,主要从事建筑抗倒塌方面研究(E-mail:qiankai@gxu.edu.cn);李治(1991-),男,江西赣州人,博士生,主要从事建筑抗倒塌方面研究(E-mail:lizhi@st.gxu.edu.cn);翁运昊(1993-),男,广西钦州人,博士生,主要从事建筑抗倒塌方面研究(E-mail:wengyh@st.gxu.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51778153,51568004,51478118,51678164)

BEHAVIOR OF RC BEAM-SLAB SUBSTRUCTURES TO RESIST PROGRESSIVE COLLAPSE

QIAN Kai, LI Zhi, WENG Yun-hao, DENG Xiao-fang   

  1. School of Civil Engineering and Architecture, Guangxi University, Nanning, Guangxi 53004, China
  • Received:2018-05-31 Revised:2019-02-16 Online:2019-06-25 Published:2019-05-31

摘要: 该文通过试验与有限元模拟研究边柱失效工况下钢筋混凝土(RC)梁-板子结构抗连续倒塌性能。在实验室通过对RC梁-板子结构缩尺模型开展pushdown试验研究梁-板子结构的破坏模态,并进一步讨论了梁-板子结构在倒塌过程中的荷载传递机理和抗力机制。试验结果表明:RC梁-板子结构在倒数第二个边柱失效下可以形成有效的梁机制、压拱机制、悬链线机制以及拉膜机制抵抗倒塌。在小变形阶段,楼板在负弯矩区作为梁翼缘可以显著提升RC梁抗弯承载力(T型梁作用);在大变形阶段,楼板发展拉膜作用早于梁发展悬链线机制。此外,根据有限元软件LSDYNA开展的数值分析结果表明:楼板提升RC框架屈服承载力与极限承载力分别高达65%和61%。

关键词: 梁-板子结构, 压拱机制, 梁机制, 拉膜机制, 连续倒塌

Abstract: The progressive collapse resistance of RC beam-slab substructure under the loss of a penultimate side column is studied through the experimental and numerical analysis. A scaled RC beam-slab substructure is carried out in the laboratory by considering the effect of service loading during collapse. The failure modes, load redistribution mechanism, and load resisting mechanism are investigated and discussed. The experimental results showed that the beam action, compression arch action, catenary action, and tensile membrane action can be mobilized to resist the collapse of RC beam-slab structures under a penultimate column failure scenario. In the initial deformation stage, the flange effects of the slab could enhance the flexural resistance of RC beams. However, the mobilization of tensile membrane action in RC slabs is earlier than that of catenary action in RC beams. In addition, the numerical analysis based on the commercial finite element software LSDYNA showed that the floor slabs increase the yield strength and ultimate bearing capacity of a RC frame up by 65% and 61%, respectively.

Key words: beam-slab substructures, compressive arch action, beam action, tensile membrane action, progressive collapse

中图分类号: 

  • TU375.4
[1] 胡晓斌, 钱稼茹. 结构连续倒塌分析与设计方法综述[J]. 建筑结构, 2006, 36(增刊1):573-577. Hu Xiaobing, Qian Jiaru. Overview of analysis and design approaches for progressive collapse of structural[J]. Building Structure, 2006, 36(Suppl):573-577. (in Chinese)
[2] ASCE/SEI. Minimum design loads for buildings and other structures[S]. Reston:Structural Engineering Institute-American Society of Civil Engineers, 2010.
[3] DoD. Design of structures to resists progressive collapse[S]. Washington DC:Department of Defense, 2009.
[4] GSA. Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects[S]. Washington DC:General Service Administration, 2003.
[5] CECS 392-2014, 建筑结构抗倒塌设计规范[S]. 北京:中国计划出版社, 2015.CECS 392-2014, Code for design of anti-collapse of building structures[S]. Beijing:China Planning Press, 2015. (in Chinese)
[6] Sasani M, Kropelnicki J. Progressive collapse analysis of an RC structure[J]. The Structural Design of Tall and Special Buildings, 2008, 17(4):757-771.
[7] Yu J, Tan K. Structural behavior of RC beam-column sub-assemblages under a middle column removal scenario[J]. Journal of Structural Engineering, 2013, 139(2):233-250.
[8] 郭义庆, 喻君. 单柱失效下结构连续倒塌的动力响应分析[J]. 工程力学, 2017, 34(4):72-77. Gou Yiqing, Yu Jun. Dynamic structural response of progressive collapse under a single-column-removal scenario[J]. Engineering Mechanics, 2017, 34(4):72-77. (in Chinese)
[9] Yi W J, He Q F, Xiao Y, et al. Experimental study on progressive collapse-resistant behavior of reinforced concrete frame structures[J]. ACI Structural Journal, 2008, 105(4):433-439.
[10] 易伟建, 张凡榛. 钢筋混凝土板柱结构抗倒塌性能试验研究[J]. 建筑结构学报, 2012, 33(6):35-41. Yi Weijian, Zhang Fangzhen. Experimental study on collapse performance of a RC flat plate frame structure[J]. Journal of Building Structures, 2012, 33(6):35-41. (in Chinese)
[11] 初明进, 周育泷, 陆新征, 等. 钢筋混凝土单向梁板子结构抗连续倒塌试验研究[J]. 土木工程学报, 2016, 49(2):31-40. Chu Mingjin, Zhou Yulong, Lu Xingzhen, et al. An experimental study on one-way reinforced concrete beam-slab substructures for resisting progressive collapse[J]. China Civil Engineering Journal, 2016, 49(2):31-40. (in Chinese)
[12] 任沛琪. 钢筋混凝土梁-板子结构在边柱失效下的连续倒塌试验研究[D]. 北京:清华大学, 2015. Ren Peiqi. Experimental study on the progressive collapse resistance of reinforced concrete beam-slab substructures under an edge-column-removal scenario[D]. Beijing:Tsinghua University, 2015. (in Chinese)
[13] Qian K, Li B. Slab effects on response of reinforced concrete substructures after loss of corner column[J]. ACI Structural Journal, 2012, 109(6):845-855.
[14] Qian K, Li B. Experimental study of drop-panel effects on response of reinforced concrete flat slabs after loss of corner column[J]. ACI Structural Journal, 2013, 110(2):319-329.
[15] CP 65. Structural use of concrete, Part 1. Code of practice for design and construction[S]. Singapore Standard, Singapore, 1999.
[16] GB 50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[17] ACI Committee 318. Building code requirements for structural concrete and commentary[S]. American Concrete Institute, Farmington Hills, MI, 2008.
[18] 钱凯, 罗达, 贺盛, 等. 钢筋混凝土框架结构底部相邻两柱失效的抗连续倒塌性能研究[J]. 建筑结构学报, 2018, 39(1):61-68. Qian Kai, Luo Da, He Sheng, et al. Progressive collapse performance of reinforced concrete frame structures subjected to ground two-column removal scenario[J]. Journal of Building Structures, 2018, 39(1):61-68. (in Chinese)
[19] Qian K, Li B, Ma J X. Load-carrying mechanism to resist progressive collapse of RC buildings[J]. Journal of Structural Engineering, 2015, 104(2):04014107.
[20] Anh T P, Namyo S L, Tan K H. Investigations of tensile membrane action in beam-slab systems under progressive collapse subject to different loading configurations and boundary conditions[J]. Engineering Structures 2017, 150(1):520-536.
[21] 秦卫红, 冯鹏, 施凯捷, 等. 玻璃纤维加固梁柱结构抗连续倒塌性能数值分析[J]. 同济大学学报(自然科学版), 2014, 42(11):1647-1653. Qin Weihong, Feng Peng, Shi Kaijie, et al. Numerical analysis of progressive collapse behavior of glass fiber reinforced polymer strengthened beam-column structures[J]. Journal of Tongji University (Nature Science), 2014, 42(11):1647-1653. (in Chinese)
[22] 高佳明, 刘伯权, 黄华, 等. 带板钢筋混凝土框架连续倒塌理论分析[J]. 工程力学, 2018, 35(7):117-126. Gao Jiaming, Liu Boquan, Huang Hua, et al. Theoretical analysis on the progressive collapse of RC frame structures with slabs[J]. Engineering Mechanics, 2018, 35(7):117-126. (in Chinese)
[23] 王景玄, 王文达, 李华伟. 钢管混凝土平面框架子结构抗连续倒塌精细有限元分析[J]. 工程力学, 2018, 35(6):105-114. Wang Jingxuan, Wang Wenda, Li Huawei. Refined finite element analysis of progressive collapse of planar frames with concrete-filled steel tubular columns[J]. Engineering Mechanics, 2018, 35(6):105-114. (in Chinese)
[24] Qian K, Weng Y H, Li B. Impact of two columns missing on dynamic response of RC flat slab structures[J]. Engineering Structures, 2018, 177(15):598-615.
[25] Qian K, Weng Y H, Li B. Improving behavior of reinforced concrete frames to resist progressive collapse through steel bracings[J]. Journal of Structural Engineering, 2019, 192(2):0002263.
[1] 杜永峰, 时晨. 多向动力耦合激励下隔震结构连续倒塌性能分析[J]. 工程力学, 2019, 36(6): 248-256.
[2] 肖宇哲, 李易, 陆新征, 任沛琪, 何浩祥. 混凝土梁柱子结构连续倒塌动力效应的试验研究[J]. 工程力学, 2019, 36(5): 44-52.
[3] 杜轲, 滕楠, 孙景江, 燕登, 骆欢. 基于共旋坐标和力插值纤维单元的RC框架结构连续倒塌构造方法[J]. 工程力学, 2019, 36(3): 95-104.
[4] 高佳明, 刘伯权, 黄华, 周长泉. 带板钢筋混凝土框架连续倒塌理论分析[J]. 工程力学, 2018, 35(7): 117-126.
[5] 王景玄, 王文达, 李华伟. 钢管混凝土平面框架子结构抗连续倒塌精细有限元分析[J]. 工程力学, 2018, 35(6): 105-114.
[6] 安宇骢, 谢楠, 贾影. 防连续倒塌高大模板支撑体系的两阶段设计研究[J]. 工程力学, 2017, 34(增刊): 289-294.
[7] 白久林, 金双双, 欧进萍. 钢筋混凝土框架结构强柱弱梁整体失效模式可控设计[J]. 工程力学, 2017, 34(8): 51-59.
[8] 潘毅, 陈侠辉, 姚蕴艺, 邓开来. 基于抽柱法的无粘结预应力装配式框架结构连续倒塌分析[J]. 工程力学, 2017, 34(12): 162-170.
[9] 刁梦竹, 李易, 陆新征, 闫维明. 钢筋混凝土楼板连续倒塌的一种简化模拟方法[J]. 工程力学, 2016, 33(增刊): 72-78.
[10] 陆金钰, 董霄, 李娜, 武啸龙. 环箍-穹顶索杆结构局部断索抗倒塌能力分析[J]. 工程力学, 2016, 33(增刊): 173-178.
[11] 喻莹, 谭长波, 金林, 王钦华, 朱兴一. 基于有限质点法的单层球面网壳强震作用下连续倒塌破坏研究[J]. 工程力学, 2016, 33(5): 134-141.
[12] 周育泷, 李易, 陆新征, 初明进, 任沛琪. 钢筋混凝土框架抗连续倒塌的压拱机制分析模型[J]. 工程力学, 2016, 33(4): 34-42.
[13] 徐颖, 韩庆华, 练继建. 单层球面网壳抗连续倒塌性能研究[J]. 工程力学, 2016, 33(11): 105-112.
[14] 田相凯, 陈适才, 张磊, 李易, 闫维明. 基于能量的局部火灾引起钢结构连续倒塌简化分析方法[J]. 工程力学, 2015, 32(9): 135-140,148.
[15] 王文达,王景玄,周小燕. 基于纤维模型的钢管混凝土组合框架连续倒塌非线性动力分析[J]. 工程力学, 2014, 31(9): 142-151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日