工程力学 ›› 2019, Vol. 36 ›› Issue (6): 227-238.doi: 10.6052/j.issn.1000-4750.2018.05.0295

• 土木工程学科 • 上一篇    下一篇

高速铁路桥梁竖向变形与轨面几何形态的通用映射解析模型研究

勾红叶1, 冉智文1, 蒲黔辉1, 许会燕2   

  1. 1. 西南交通大学土木工程学院桥梁工程系, 成都 610031;
    2. 中交公路长大桥建设国家工程研究中心有限公司, 北京 100088
  • 收稿日期:2018-05-29 修回日期:2018-12-06 出版日期:2019-06-25 发布日期:2019-05-31
  • 通讯作者: 勾红叶(1983-),女,四川绵阳人,副教授,博士,硕导,主要从事高速铁路桥梁防灾减灾与行车安全研究(E-mail:gouhongye@swjtu.cn). E-mail:gouhongye@swjtu.cn
  • 作者简介:冉智文(1996-),男,四川绵竹人,硕士生,主要从事高速铁路桥梁-轨道变形映射关系研究(E-mail:1770825442@qq.com);蒲黔辉(1965-),男,四川渠县人,教授,博士,博导,主要从事高速铁路桥梁结构行为研究(E-mail:qhpu@vip,163.com);许会燕(1992-),女,河北石家庄人,助理工程师,硕士,主要从事高速铁路桥梁防灾减灾研究(E-mail:1169663608@qq.com).
  • 基金资助:
    国家自然科学基金项目(51878563,51508474);四川省科技计划资助项目(2018JY0294,2018JY0549);中国铁建股份公司科技研究开发计划项目(2014-C34)

STUDY ON MAPPING RELATIONSHIP BETWEEN BRIDGE VERTICAL DEFORMATION AND TRACK GEOMETRY OF HIGH-SPEED RAILWAY

GOU Hong-ye1, RAN Zhi-wen1, PU Qian-hui1, XU Hui-yan2   

  1. 1. Southwest Jiaotong University, Chengdu, Sichuan 610031, China;
    2. CCCC Highway Bridges National Engineering Research Centre Co. Ltd, Beijing 100088, China
  • Received:2018-05-29 Revised:2018-12-06 Online:2019-06-25 Published:2019-05-31

摘要: 针对高速铁路常用的32 m简支梁桥及CRTS I型板式无砟轨道结构,通过逐层分析无砟轨道层间结构受力状态,建立了桥梁竖向变形与轨面几何形态的通用映射解析模型。通过对比映射解析模型、有限元模型和室内试验在不同桥梁竖向变形模式下的钢轨变形和扣件力的求解结果及试验数据,验证了映射解析模型的准确性和有效性。提出钢轨变形延伸系数的概念用以描述钢轨及梁体变形区域长度与影响钢轨变形的关键参数之间的关系。通过研究关键参数对钢轨变形的影响,提出了控制钢轨变形的措施。研究结果表明:通用映射解析模型可求解由桥梁竖向变形引起的CRTS I型单元板式无砟轨道钢轨变形。当桥梁发生竖向错台时,钢轨的最大变形值极大程度上取决于错台幅值,且在桥梁竖向变形边界上钢轨会出现"上翘"现象。采用竖向刚度较小的扣件可以使得钢轨变形曲线更平缓。

关键词: 高速铁路, 桥梁竖向变形, 轨面几何形态, 映射关系, 解析模型, 影响因素

Abstract: In view of a 32 m simply-supported beam bridge and CRTSI slab ballastless track structure commonly used in high-speed railway, the stress of the interlayer structure of a ballastless track is analyzed. Then a mapping analytical model of the bridge vertical deformation and the track geometry is established. Through the comparison between the results from the mapping analytical model and finite element model and indoor experimental tests for the rail deformation and fastener force under different bridge vertical deformation modes, the accuracy and effectiveness of the mapping analytical model are verified. The concept of a rail-deformation-elongation coefficient is proposed to describe the relationship between the length of a rail and its beam deformation area and the key parameters affecting rail deformation. Besides, by studying the influence of key parameters on rail deformation, the measures for controlling rail deformation are put forward. The results show that the general mapping analytical model can be used to solve the rail deformation of CRTSI slab-ballastless-track structure caused by bridge vertical deformation. When the vertical beam-fault occurs, the maximum deformation value of the rail depends on the vertical-beam-fault amplitude. The rail will appear ‘up-warping’ on the vertical deformation boundary. Besides, using the fastener with smaller stiffness can make the rail-deformation curve gentler.

Key words: high-speed railway, bridge vertical deformation, track geometry, mapping relationship, analytical model, influencing factors

中图分类号: 

  • U213.2
[1] 翟婉明, 赵春发, 夏禾, 等. 高速铁路基础结构动态性能演变及服役安全的基础科学问题[J]. 中国科学:技术科学, 2014, 44(7):645-660. Zhai Wanming, Zhao Chunfa, Xia He, et al. Basic scientific issues on dynamic performance evolution of the high-speed railway infrastructure and its service safety[J]. Scientia Sinica Technologica, 2014, 44(7):645-660. (in Chinese)
[2] 翟婉明, 赵春发. 现代轨道交通工程科技前沿与挑战[J]. 西南交通大学学报, 2016, 51(2):209-226. Zhai Wanming, Zhao Chunfa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2):209-226. (in Chinese)
[3] 何华武. 灾害对铁路影响及其防御对策[J]. 中国铁路, 2008, 2008(10):1-8. He Huawu. The Influence of Disasters on Railway and Its Solutions[J]. Chinese Railway, 2008(10):1-8. (in Chinese)
[4] 朱志辉, 杨乐, 王力东, 等. 地震作用下铁路斜拉桥动力响应及行车安全性研究[J]. 工程力学, 2017, 34(4):78-87. Zhu Zhihui, Yang Le, Wang Lidong, et al. Dynamic responses and train running safety of railway cable-stayed bridge under earthquakes[J]. Engineering Mechanics, 2017, 34(4):78-87. (in Chinese)
[5] 李凯强. 多次地震作用下高速铁路桥墩残余变形累积效应及影响因素研究[D]. 成都:西南交通大学, 2017:2-8. Li Kaiqiang. Accumulative residual deformations and influencing factors of high-speed railway bridge piers subjected to multiple earthquakes[D]. Chengdu:Southwest Jiaotong University, 2017:2-8. (in Chinese)
[6] 凌亮, 肖新标, 吴磊, 等. 地震波频谱特性对高速列车动态脱轨行为的影响[J]. 工程力学, 2013, 30(1):384-393. Ling Liang, Xiao Xinbiao, Wu Lei, et al. Effect of spectrum characteristics of seismic wave on derailment of high-speed train[J]. Engineering Mechanics, 2013, 30(1):384-393. (in Chinese)
[7] Ju S H. 3D analysis of high-speed trains moving on bridges with foundation settlements[J]. Archive of Applied Mechanics, 2013, 83(2):281-291.
[8] 王昆鹏, 夏禾, 郭薇薇, 等. 桥墩不均匀沉降对高速列车运行安全影响研究[J]. 振动与冲击, 2014, 33(6):137-155. Wang Kunpeng, Xia He, Guo Weiwei, et al. Influence of uneven settlement of bridge piers on running safety of high-speed trains[J]. Journal of Vibration and Shock, 2014, 33(6):137-155. (in Chinese)
[9] Gou Hongye, He Yannian, Zhou Wen, Bao Yi, Chen Genda. Experimental and numerical investigations of the dynamic responses of an asymmetrical arch railway bridge[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2018, 0(0):1-15.
[10] Gou Hongye, Zhou Wen, Chen Genda, Bao Yi, Pu Qianhui. In-situ test and dynamic response of a double-deck tied-arch bridge[J]. Steel and Composite Structures, 2018, 27(2):161-175.
[11] Ju SH, Leong CC, Ho YS. Safety of maglev trains moving on bridges subject to foundation settlements and earthquakes[J]. Journal of Bridge Engineering, 2014, 19(1):91-100.
[12] 吴楠, 肖军华, 陈建国, 等. 高速铁路无砟轨道桥梁基础变形对行车的影响[J]. 铁道工程学报, 2017, 34(9):58-63. Wu Nan, Xiao Junhua, Chen Jianguo, et al. Effect of bridge pier deformation for high speed railway with ballastless track on train running safety and comfort[J]. Journal of Railway Engineering Society, 2017, 34(9):58-63. (in Chinese)
[13] 陈兆玮, 孙宇, 翟婉明. 高速铁路桥墩沉降与钢轨变形的映射关系(I):单元板式无砟轨道系统[J]. 中国科学:技术科学, 2014, 44(7):770-777. Chen Zhaowei, Sun Yu, Zhai Wanming. Mapping relationship between pier settlement and rail deformation of high-speed railways-part (I):The unit slab track system[J]. Scientia Sinica Technologica, 2014, 44(7):770-777. (in Chinese)
[14] 陈兆玮, 孙宇, 翟婉明. 高速铁路桥墩沉降与钢轨变形的映射关系(Ⅱ):纵连板式无砟轨道系统[J]. 中国科学:技术科学, 2014, 44(7):778-785. Chen Zhaowei, Sun Yu, Zhai Wanming. Mapping relationship between pier settlement and rail deformation of high-speed railways-part (Ⅱ):The longitudinal connected ballastless track system[J]. Scientia Sinica Technologica, 2014, 44(7):778-785. (in Chinese)
[15] 蔡小培, 刘薇, 王璞, 等. 地面沉降对路基上双块式无砟轨道平顺性的影响[J]. 工程力学, 2014, 31(9):160-165. Cai Xiaopei, Liu Wei, Wang Pu, et al. Effect of land subsidence on regularity of double-block ballastless track[J]. Engineering Mechanics, 2014, 31(9):160-165. (in Chinese)
[16] 赵立宁, 蔡小培, 曲村. 地面沉降对路基上单元板式无砟轨道平顺性的影响分析[J]. 铁道标准设计, 2013, 2013(10):15-18. Zhao Lining, Cai Xiaopei, Qu Cun. Influence of land subsidence on the regularity of the ballastless track with unit slabs[J]. Railway Standard Design, 2013, 2013(10):15-18. (in Chinese)
[17] 蔡小培, 梁延科, 谭诗宇, 等. 路基冻胀地区CRTS Ⅰ 型板式无砟轨道结构变形与离缝特征分析[J]. 北京交通大学学报, 2017, 41(1):7-13. Cai Xiaopei, Liang Yanke, Tan Shiyu, et al. Deformation and seam characteristics analysis of crts Ⅰ slab ballastless track in subgrade frost heaving zone[J]. Journal of Beijing Jiaotong University, 2017, 41(1):7-13. (in Chinese)
[18] 郭毅. 高速铁路路基冻胀变形引起的轨道结构变形特性及其对行车的动力影响研究[D]. 成都:西南交通大学, 2016:39-59. Guo Yi. Study on the Effect of subgrade frost heaving on the deformation properties of track structure and its vehicle dynamic behavior in high-speed railway[D]. Chengdu:Southwest Jiaotong University, 2016:39-59. (in Chinese)
[19] Zhang Xiaohui, Shan Yao, Yang Xinwen. Effect of bridge-pier differential settlement on the dynamic response of a high-speed railway train-track-bridge system[J]. Mathematical Problems in Engineering, 2017(7):1-13.
[20] 郭宇, 高建敏, 孙宇, 等. 板式无砟轨道轨面变形与路基沉降的映射关系[J]. 西南交通大学学报, 2017, 52(6):1139-1147. Guo Yu, Gao Jianmin, Sun Yu, et al. Mapping relationship between rail deflection of slab track and subgrade settlement[J]. Journal of Southwest Jiaotong University, 2017, 52(6):1139-1147. (in Chinese)
[21] 郭宇, 高建敏, 孙宇, 等. 路基沉降与双块式无砟轨道轨面几何变形的映射关系[J]. 铁道学报, 2016, 38(9):92-100. Guo Yu, Gao Jianmin, Sun Yu, et al. Mapping relationship between subgrade settlement and rail deflection of the double-block ballastless track[J]. Journal of The China Railway Society, 2016, 38(9):92-100. (in Chinese)
[22] Yu Feng, Jar P-Y B, Hendry Michael. Effect of temperature on deformation and fracture behaviour of high strength rail steel[J]. Engineering Fracture Mechanics, 2015, 146:41-55.
[23] 杨静静, 张楠, 高芒芒, 等. CRTSⅡ 型无砟轨道温度翘曲变形及其对车线动力响应的影响[J]. 工程力学, 2016, 33(4):210-217. Yang Jingjing, Zhang Nan, Gao Mangmang, et al. Temperature warping and its impact on train-track dynamic response of CRTSⅡ ballastless track[J]. Engineering Mechanics, 2016, 33(4):210-217. (in Chinese)
[24] 钟阳龙, 高亮, 王璞, 等. 温度荷载下CRTSⅡ 型轨道板与CA砂浆界面剪切破坏机理[J]. 工程力学, 2018, 35(2):230-238. Zhong Yanglong, Gao Liang, Wang Pu, et al. Mechanism of interfacial shear failure between CRTSⅡ slab and CA mortar under temperature loading[J]. Engineering Mechanics, 2018, 35(2):230-238. (in Chinese)
[25] 夏桂云, 李传习, 曾庆元. Winkler地基上Timoshenko深梁的有限元分析[J]. 中南大学学报(自然科学版), 2010, 41(4):1549-1555. Xia Guiyun, Li Chuanxi, Zeng Qingyuan. Finite element formulation of Timoshenko beam on Winkler elastic foundation[J]. Journal of Central South University (Science and Technology), 2010, 41(4):1549-1555. (in Chinese)
[26] 魏亚辉. 高速铁路无砟轨道桥梁梁端变形相关问题研究[D]. 北京:中国铁道科学研究院, 2012:70-86. Wei Yahui. Research on beam end displacement relevant problems for high-speed railway ballastless track bridge[D]. Beijing:China Academy of Railway Sciences, 2012:70-86. (in Chinese)
[1] 张景钰, 张明金, 李永乐, 房忱, 向活跃. 高速铁路路堤-路堑过渡段复杂风场和列车气动效应风洞试验研究[J]. 工程力学, 2019, 36(1): 80-87.
[2] 张永亮, 冯鹏飞, 陈兴冲, 宁贵霞, 丁明波. 基于静-动力分析相结合方法的桥梁桩基础地震反应分析及抗震性能评价[J]. 工程力学, 2018, 35(S1): 325-329,343.
[3] 李小珍, 邱晓为, 刘德军, 秦羽. 时速400 km/h铁路常用跨度预应力混凝土简支梁竖向基频限值研究[J]. 工程力学, 2018, 35(5): 204-213.
[4] 魏标, 杨添涵, 蒋丽忠. 轨道结构建模精细化程度对高速铁路连续梁桥地震易损性的影响[J]. 工程力学, 2018, 35(4): 16-23,51.
[5] 丁敏, 汪友弟, 代春辉, 剧锦三, 蒋秀根. 钢管混凝土轴心受压构件的徐变预测模型及其徐变性能分析[J]. 工程力学, 2017, 34(6): 166-177.
[6] 高照宇, 陈清军. 地震作用下地下商业街结构动力反应的影响因素分析[J]. 工程力学, 2016, 33(增刊): 85-89,149.
[7] 苏洋, 李永乐, 向活跃, 彭栋. 基于NSGA-II&DEA混合算法的高速铁路桥梁风屏障高度多目标优化研究[J]. 工程力学, 2016, 33(9): 138-145,170.
[8] 郑国琛, 祁皑. 福州地铁运行引起的环境振动加速度预测分析[J]. 工程力学, 2015, 32(增刊): 331-336,341.
[9] 熊志远, 宋瑞祥, 康钟绪, 刘磊, 刘强. 复合材料螺旋弹簧刚度及其影响因素分析[J]. 工程力学, 2015, 32(9): 216-221,228.
[10] 郭薇薇, 夏禾, 张田. 桥梁风屏障的气动效应及其对高速列车运行安全的影响分析[J]. 工程力学, 2015, 32(8): 112-119.
[11] 陈宗平,徐金俊,薛建阳. 型钢混凝土异形柱-钢梁空间边节点的抗震性能及影响因素分析[J]. 工程力学, 2015, 32(2): 105-113.
[12] 戎贤,张健新,李艳艳. 高强钢筋混凝土桥墩抗震性能试验研究与分析[J]. 工程力学, 2015, 32(10): 99-105.
[13] 蔡小培,刘薇,王璞,宁星. 地面沉降对路基上双块式无砟轨道平顺性的影响[J]. 工程力学, 2014, 31(9): 160-165.
[14] 蒋丽忠, 邵光强, 王辉, 姜静静. 高速铁路圆端形空心桥墩抗震性能试验研究[J]. 工程力学, 2014, 31(3): 72-82.
[15] 李小珍,刘孝寒,张迅,李亚东. 基于相干分析的高铁简支箱梁结构噪声源识别方法研究[J]. 工程力学, 2014, 31(1): 129-136.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日