工程力学 ›› 2019, Vol. 36 ›› Issue (6): 219-226.doi: 10.6052/j.issn.1000-4750.2018.05.0294

• 土木工程学科 • 上一篇    下一篇

连续排水边界条件下线性加载地基一维固结解析解

冯健雪1,2,3, 陈征4, 李勇义1,2,3,5, 梅国雄1,2,3   

  1. 1. 工程防灾与结构安全教育部重点实验室, 南宁 530004;
    2. 广西防灾减灾与工程安全重点实验室, 南宁 530004;
    3. 广西大学土木工程学院, 南宁 530004;
    4. 武汉大学水工岩石力学教育部重点实验室, 武汉 430072;
    5. 中交第二公路勘察设计研究院有限公司, 武汉 430056
  • 收稿日期:2018-05-29 修回日期:2018-11-08 出版日期:2019-06-25 发布日期:2019-05-31
  • 通讯作者: 梅国雄(1975-),男,湖北人,教授,博士,博导,主要从事固结理论和土体基本性质等研究(E-mail:meiguox@163.com). E-mail:meiguox@163.com
  • 作者简介:冯健雪(1985-),男,贵州人,博士生,主要从事软土地基固结理论方面的研究(E-mail:fengjianxue@mail.gxu.cn);陈征(1989-),男,江苏人,博士生,主要从事软土地基固结理论方面的研究(E-mail:1946562738@qq.com);李勇义(1990-),男,湖北人,硕士生,主要从事软土地基固结理论方面的研究(E-mail:liyonyi2013@163.com).
  • 基金资助:
    国家自然科学基金项目(51578164,41672296);广西自然科学基金创新研究团队项目(2016GXNSFGA380008)

ANALYTICAL SOLUTION FOR ONE-DIMENSIONAL CONSOLIDATION OF SOFT CLAYEY SOIL WITH A CONTINUOUS DRAINAGE BOUNDARY UNDER LINEAR LOADING

FENG Jian-xue1,2,3, CHEN Zheng4, LI Yong-yi1,2,3,5, MEI Guo-xiong1,2,3   

  1. 1. Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Nanning 530004, China;
    2. Guangxi Key Laboratory of Disaster Prevention and Structural Safety, Nanning 530004, China;
    3. College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China;
    4. Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering(Wuhan University), Ministry of Education, Wuhan 430072, China;
    5. CCCC Second Highway Consultants Co. Ltd., Wuhan 430056, China
  • Received:2018-05-29 Revised:2018-11-08 Online:2019-06-25 Published:2019-05-31

摘要: 基于瞬时加载下的连续排水边界条件,推导出任意荷载连续排水边界条件,建立了任意荷载连续排水边界条件下线性加载一维固结方程。利用有限正弦傅里叶变换,求解出其解析解,通过公式退化和有限元成果对比分析,对该文解答的正确性进行了验证。在不同加载速率和界面参数的条件下,分析了加载速率和界面排水参数对孔压和平均固结度的影响。结果表明:加载速率对固结影响较为显著,加载速率越大,孔压消散越为迅速;当加载速率趋于无穷大时,线性加载退化为瞬时加载;随着界面参数的增大,孔压消散明显,地基固结增快;当界面参数趋于无穷大时,排水边界退化为完全排水边界。工程中,在界面参数或堆载时间确定时,对选择合适的堆载时间或界面参数保证地基稳定性和提高工程效益具有一定参考意义。

关键词: 连续排水边界, 线性加载, 解析解, 加载速率, 界面参数, 平均固结度

Abstract: Based on the instantaneous loading with continuous drainage boundary conditions, a continuous drainage boundary condition under arbitrary loading is derived. The one-dimensional consolidation equation of linear loading is established under the continuous drainage boundary conditions under arbitrary loading. Using the finite Fourier sine transformation method, the analytical solution is presented. The effectiveness of the solution is demonstrated by formula degradation and a comparison with finite element analysis results. The influence of the loading rate and interface parameters on the excess pore-water pressure and consolidation degree is discussed. The results show that the loading rate has a significant effect on consolidation, and that the greater is the loading rate, the faster the excess pore-water pressure dissipates. When the loading rate approaches to infinity, linear loading degradation is instantaneous loading. With the increase of the interface parameters, the excess pore-water pressure dissipates and the consolidation increases rapidly. When the interface parameter approaches to infinity, the drainage boundary degenerates into a complete permeable boundary. In engineering practice, when the interface parameters (or surcharge time) are determined, it is of certain significance to select suitable loading time (or interface parameters) to ensure the stability of foundation and to increase engineering benefits.

Key words: continuous drainage boundary, linear loading, analytical solution, loading rate, interface parameters, average consolidation degree

中图分类号: 

  • TU43
[1] Terzaghi K. Erdbaumechanik auf bodenphysikalischer grundlage[M]. Wien:Fanz Deuticke, 1925:399.
[2] Gray H. Simultaneous consolidation of contiguous layers of unlike compressible soils[J]. Transactions of the American Society of Civil Engineering, 1945, 110:1327-1356.
[3] 梅国雄, 夏君, 梅岭. 基于不对称连续排水边界的太沙基一维固结方程及其解答[J]. 岩土工程学报, 2011, 33(1):28-31. Mei Guoxiong, Xia Jun, Mei Ling. Terzaghi's one-dimensional consolidation equation and its solution based on asymmetric continuous drainage boundary[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1):28-31. (in Chinese)
[4] Mei G X, Chen Q M. Solution of Terzaghi one-dimensional consolidation equation with general boundary conditions[J]. Journal of Central South University, 2013, 20(8):2239-2244.
[5] 郑昱, 梅国雄, 梅岭. 广义连续排水边界在一维固结问题中的应用[J]. 南京工业大学学报(自然科学版), 2010, 32(6):54-58. Zheng Yun, Mei Guoxiong, Mei Ling. Generalized continuous drainage boundary applied in one-dimensional consolidation theory[J]. Journal of Nanjing University of Technology (Natural Science), 2010, 32(6):54-58. (in Chinese)
[6] 蔡烽, 何利军, 周小鹏, 等. 连续排水边界下成层地基一维固结问题的有限元分析[J]. 中南大学学报:自然科学版, 2013, 44(1):315-323. Cai Feng, He Lijun, Zhou Xiaopeng, et al. Finite element analysis of one-dimensional consolidation problem with continuous drainage boundaries in layered ground[J]. Journal of Central South University (Natural Science), 2013, 44(1):315-323. (in Chinese)
[7] 蔡烽, 何利军, 周小鹏, 等. 连续排水边界下一维固结不排水对称面的有限元分析[J]. 岩土工程学报, 2012, 34(11):2141-2147.Cai Feng, He Lijun, Zhou Xiaopeng, et al. Finite element analysis of one-dimensional consolidation of undrained symmetric plane under continuous drainage boundary[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11):2141-2147. (in Chinese)
[8] 蔡烽, 何利军, 张青青, 等. 考虑土体自重的不排水对称面有限元分析[J]. 浙江大学学报(工学版), 2013, 47(12):2132-2140. Cai Feng, He Lijun, Zhang Qingqing, et al. Finite element analysis of undrained symmetry plane with self-weight[J]. Journal of Zhejiang University (Natural Science), 2013, 47(12):2132-2140. (in Chinese)
[9] Liu J C, Lei G H. One-dimensional consolidation of layered soils with exponentially time-growing drainage boundaries[J]. Computers and Geotechnics, 2013, 54(10):202-209.
[10] 何利军, 吴立松, 张涛, 等. 基于连续边界条件的土层厚度随时间变化的平均固结度研究[J]. 工程力学, 2016, 33(6):11-17. He Lijun, Wu Lisong, Zhang Tao, et al. Study on the average consolidation of soil thickness based on continuous boundary conditions[J]. Engineering Mechanics, 2016, 33(6):11-17. (in Chinese)
[11] Wu W, Zong M, El Naggar M H, et al. Analytical solution for one-dimensional consolidation of double-layered soil with exponentially time-growing drainage boundary[J]. International Journal of Distributed Sensor Networks, 2018, 14(10):1550147718806716.
[12] Schiffman R. Consolidation of soil under time-dependent loading and varying permeability[J]. Proceedings, Highway Research Board, 1958, 37:584-617.
[13] Lei G H, Zheng Q, Ng C W W, et al. An analytical solution for consolidation with vertical drains under multi-ramp loading[J]. Géotechnique, 2015, 65(7):531-547.
[14] Xie K H, Xia C Q, An R, et al. A study on the one-dimensional consolidation of double-layered structured soils[J]. Computers and Geotechnics, 2016, 73:189-198.
[15] Wilson N E, Elgohary M M. Consolidation of soils under cyclic loading[J]. Canadian Geotechnical Journal, 1974, 11(3):420-423.
[16] Alonso E E, Krizek R J. Randomness of settlement rate under stochastic load[J]. Journal of the Geotechnical Engineering Division, ASCE, 1974, 100(EM6):1211-1226.
[17] Xie K H, Li B H, Li Q L. A nonlinear theory of consolidation under time-dependent loading[C]. Proceedings of 2nd International Conference on Soft Soil Engineering, Nanjing:Hohai University Press, 1996:193-196.
[18] Hu A F, Xia C Q, Cui J, et al. Nonlinear consolidation analysis of natural structured clays under time-dependent loading[J]. International Journal of Geomechanics, 2017, 18(2):04017140.
[19] Favaretti M, Soranzo M. A simplified consolidation theory in cyclic loading conditions[C]. International Symposium on Compression and Consolidation of Clayey Soils, A. A. Balkema:Rotterdam, The Netherlands, 1995:405-409.
[20] 王小雯, 张建民. 随机波浪作用下饱和砂质海床弹塑性动力响应规律[J]. 工程力学, 2018, 35(6):240-248, 256. Wang Xiaowen, Zhang Jianmin. Elastoplastic dynamic behaviors of saturated sandy seabed under random[J]. Engineering Mechanics, 2018, 35(6):240-248, 256. (in Chinese)
[21] Chen J Z, Zhu X R, Xie K H, et al. One dimensional consolidation of soft clay under trapezoidal cyclic loading[C]. Proceedings of 2nd International Conference on Soft Soil Engineering, Nanjing:Hohai University Press, 1996:211-216.
[22] Pzul M, Sahu R. One dimensional consolidation under cyclic loading[J]. International Journal of Geotechnical Engineering, 2013, 6(3):395-401.
[23] Ho L, Fatahi B. Analytical solution for the two-dimensional plane strain consolidation of an unsaturated soil stratum subjected to time-dependent loading[J]. Computers and Geotechnics, 2015, 67:1-16.
[24] Feng J X, Ni P P, Mei G X. One-dimensional self-weight consolidation with continuous drainage boundary conditions:Solution and application to clay-drain reclamation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(8):1634-1652.
[25] 黄文熙. 土的工程性质[M]. 北京:水利水电出版社, 1983:138-139. Huang Wenxi. Engineering properties of soil[M]. Beijing:Hydraulic and Hydroelectricity Press, 1983:138-139. (in Chinese)
[26] 徐书平, 刘祖德, 鲍华, 等. 堆载预压过程中的地基稳定性计算方法[J]. 岩土力学, 2005, 26(6):955-958. Xu Shuping, Liu Zude, Bao Hua, et al. Calculation methods of foundation stability in process of preloading[J]. Rock & Soil Mechanics, 2005, 26(6):955-958. (in Chinese)
[1] 冯健雪, 陈征, 李勇义, 梅国雄. 连续排水边界条件下考虑自重的地基一维固结分析[J]. 工程力学, 2019, 36(5): 184-191.
[2] 何昊南, 于开平. 考虑热对材料参数影响的FGM梁热后屈曲特性研究[J]. 工程力学, 2019, 36(4): 52-61.
[3] 李勇义, 冯健雪, 梅国雄. 连续排水边界下梯形循环荷载作用的一维固结解析解[J]. 工程力学, 2019, 36(2): 134-140.
[4] 彭天波, 李翊鸣, 吴意诚. 叠层天然橡胶支座抗震性能的实时混合试验研究[J]. 工程力学, 2018, 35(S1): 300-306.
[5] 张雷, 杨娜. 均布荷载作用下榫卯连接木梁的解析解[J]. 工程力学, 2017, 34(7): 51-60,78.
[6] 王怀忠. 轴向冲击作用下空心钢管混凝土桩应力波解析解[J]. 工程力学, 2017, 34(4): 101-107.
[7] 杨骁, 方晓雯, 汪德江. SH波作用下液化土中桩-土-结构的动力相互作用[J]. 工程力学, 2017, 34(1): 101-108.
[8] 何利军, 吴立松, 张涛, 梅国雄. 基于连续边界条件的土层厚度随时间变化的平均固结度研究[J]. 工程力学, 2016, 33(增刊): 11-17.
[9] 王华宁, 曾广尚, 蒋明镜. 黏弹-塑性岩体中锚注与衬砌联合支护的解析解[J]. 工程力学, 2016, 33(4): 176-187.
[10] 范栋浩, 杜咏, 盛红梅. 高温下张弦梁结构力学特征解析解[J]. 工程力学, 2016, 33(4): 195-204.
[11] 洪兆徽, 刘润, 刘文彬, 闫澍旺. 双拱缺陷管线整体屈曲的解析解研究[J]. 工程力学, 2016, 33(3): 31-38.
[12] 张大峰, 杨军, 李连友, 沈兆普. 考虑膨胀土地基膨胀率和刚度沿深度变化的桩-土共同作用解析解[J]. 工程力学, 2016, 33(12): 86-93.
[13] 闫维明, 石鲁宁, 何浩祥, 陈彦江. 带任意附加质量的变截面弹性支承梁动力特性的解析解[J]. 工程力学, 2016, 33(1): 47-57.
[14] 金浏, 杜修力. 加载速率对混凝土拉伸破坏行为影响观数值分析[J]. 工程力学, 2015, 32(8): 42-49.
[15] 孟强, 赵洪波, 茹忠亮, 李东利. 锚杆支护圆形隧洞弹塑性解[J]. 工程力学, 2015, 32(7): 17-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[2] 于琦;孟少平;吴京;郑开启. 预应力混凝土结构组合式非线性分析模型[J]. 工程力学, 2011, 28(11): 130 -137 .
[3] 尚仁杰;郭彦林;吴转琴;张心斌;孙文波. 基于索合力线形状的车辐式结构找形方法[J]. 工程力学, 2011, 28(11): 145 -152 .
[4] 袁振伟;王海娟;岳希明;褚福磊. 密封进口涡动系数对转子系统动力学性能的影响[J]. 工程力学, 2011, 28(11): 231 -236 .
[5] 王进廷;张楚汉;金峰. 有阻尼动力方程显式积分方法的精度研究[J]. 工程力学, 2006, 23(3): 1 -5 .
[6] 胡小荣;俞茂宏. 材料三剪屈服准则研究[J]. 工程力学, 2006, 23(4): 6 -11 .
[7] 熊铁华;常晓林. 响应面法在结构体系可靠度分析中的应用[J]. 工程力学, 2006, 23(4): 58 -61 .
[8] 戈新生;陈立群;刘延柱. 一类多体系统的非完整运动规划最优控制[J]. 工程力学, 2006, 23(3): 63 -68 .
[9] 顾致平;和兴锁;方同. 微分对接条件对次谐共振影响的研究[J]. 工程力学, 2006, 23(4): 62 -66 .
[10] 贾超;张楚汉;金峰;程卫帅. 可靠度对随机变量及失效模式相关系数的敏感度分析及其工程应用[J]. 工程力学, 2006, 23(4): 12 -16,1 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日