工程力学 ›› 2019, Vol. 36 ›› Issue (6): 211-218.doi: 10.6052/j.issn.1000-4750.2018.05.0288

• 土木工程学科 • 上一篇    下一篇

纵肋与横隔板交叉构造细节穿透型疲劳裂纹扩展特性及其加固方法研究

卜一之1, 金通2, 李俊1, 张清华1   

  1. 1. 西南交通大学桥梁工程系, 四川, 成都 610031;
    2. 南昌市城市规划设计研究总院, 江西, 南昌 330038
  • 收稿日期:2018-05-29 修回日期:2019-01-25 出版日期:2019-06-25 发布日期:2019-05-31
  • 通讯作者: 金通(1991-),男,江西高安人,助理工程师,硕士生,主要从事桥梁结构工程设计研究(E-mail:1137139411@qq.com). E-mail:1137139411@qq.com
  • 作者简介:卜一之(1961-),男,北京人,教授,工学博士,博导,主要从事高性能钢与组合结构桥梁研究(E-mail:yizhibu@163.com);李俊(1987-),男,河南安阳人,博士生,主要从事高性能钢与组合结构桥梁研究(E-mail:lijun410526@163.com);张清华(1975-),男,河南虞城人,教授,博士,博导,主要从事高性能钢与组合结构桥梁研究(E-mail:swjtuzqh@126.com).
  • 基金资助:
    国家自然科学基金项目(51778533,51878561,51578455,51178394);国家科技支撑计划项目(2011BAG07B03);中央高校基本科研业务费专项资金项目(2682014CX078)

RESEARCH ON PROPAGATION CHARACTERISTICS AND REINFORCEMENT METHOD OF PENETRATING CRACK AT RIB-TO-DIAPHRAGM WELDED JOINTS IN STEEL BRIDGE DECK

BU Yi-zhi1, JIN Tong2, LI Jun1, ZHANG Qing-hua1   

  1. 1. Department of Bridge Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China;
    2. Nanchang Urban Planning & Design Institute, Nanchang, Jiangxi 330038, China
  • Received:2018-05-29 Revised:2019-01-25 Online:2019-06-25 Published:2019-05-31

摘要: 纵肋与横隔板交叉构造细节是正交异性钢桥面板最易发生疲劳开裂的构造细节,通过建立有限元数值模型,采用断裂力学方法,研究栓接角钢加固方式对该处疲劳易损细节穿透型裂纹的加固效果。基于疲劳试验足尺节段模型相对应有限元模型,建立了纵肋与横隔板焊接处穿透型疲劳裂纹模型,针对栓接角钢和纵肋外侧栓接钢板两种加固技术的加固效果进行评估。研究结果表明:钢桥面板纵肋与横隔板交叉构造细节的疲劳裂纹扩展至一定长度后将发展成穿透型裂纹,裂纹面受力复杂,纵肋腹板内外侧疲劳裂纹扩展特性表现的不一样,但是随着裂纹扩展的逐步进行,裂纹尖端的开裂模式均以复合型开裂为主;栓接角钢加固方式主要抑制纵肋与横隔板交叉构造细节易损部位疲劳裂纹的I型开裂,因此能很好地抑制短裂纹的扩展,但对于该细节处以复合形式扩展的穿透型疲劳裂纹的加固效果并不显著;在纵肋外侧栓接半U形钢板的加固方法能有效改善穿透型疲劳裂纹的等效应力强度因子,并且加固之后均保持在裂纹扩展阈值以下,表明该加固方式对穿透型疲劳裂纹有良好加固效果。

关键词: 钢桥面板, 纵肋与横隔板焊接细节, 断裂力学, 疲劳开裂加固, 应力强度因子

Abstract: The rib-to-diaphragm welded joints in the deck of an orthotropic steel bridge is most prone to fatigue cracking. A FE model was established and fracture mechanics was used to study the reinforcement effect of angle steel reinforcement methods on the penetrating crack at fatigue vulnerable details. Based on the finite element model corresponding to a full-foot segment fatigue test model, a penetrating fatigue model was established for the cracks in rib-to-diaphragm welded joints, and the reinforcement effect was evaluated on two reinforcement techniques:bolted angle steel and the bolted steel plate beside a longitudinal rib. The results indicate that:the fatigue cracks at the welded joint in the rib-to-diaphragm of a steel bridge deck expand into a certain length and will develop into penetrating cracks, the deformation of the crack surface under stress conditions is complicated, the fatigue crack propagation characteristics of the inner and outer side of longitudinal ribs are not the same, and as the crack propagation progresses, the cracking mode of the crack tip will be dominated by composite cracking. The existing research results show that:the bolted angle steel reinforcement method can well inhibit the longitudinal rib and diaphragm connection details of the vulnerable part with the fatigue crack type I cracking. Therefore, the short crack propagation can be well suppressed. However, the reinforcement effect on penetrating fatigue cracks extended in a composite type in this detail is not as good as the short crack that have not penetrated the web; the reinforcement method of the half U rib steel plates bolted to the outside of longitudinal ribs can effectively reduce the equivalent stress intensity factor of penetrating fatigue cracks, and stay below the crack propagation threshold after reinforcement. It shows that the reinforcement method has a good reinforcement effect on penetrating fatigue cracks.

Key words: orthotropic bridge deck, rib-to-diaphragm welded joints, fracture mechanics, fatigue cracking reinforcement, stress intensity factor

中图分类号: 

  • U441.4
[1] 孟凡超, 张清华, 谢红兵, 等. 抗疲劳钢桥面板关键技术[M]. 北京:人民交通出版社, 2015. Meng Fanchao, Zhang Qinghua, Xie Hongbing, et al. Key technologies of anti fatigue steel bridge deck[M]. Beijing:China Communications Press, 2015. (in Chinese)
[2] Wang C S, Zhai M S, Li H T, et al. Life-cycle cost based maintenance and rehabitation strategies for cable supported bridges[J]. International Journal of Advanced Steel Construction, 2015, 11(3):395-410.
[3] 王春生, 翟慕赛, Houankpo T N O, 等. 正交异性钢桥面板冷维护技术及评价方法[J]. 中国公路学报, 2016, 29(8):50-58. Wang Chunsheng, Zhai Musai, Houankpo T N O, et al. Cold maintenance technique and assessment method for orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2016, 29(8):50-58. (in Chinese)
[4] Rodriguez-Sanchez J E, Dover W D, Brennan F P. Application of short repairs for fatigue life extension[J]. International Journal of Fatigue, 2004, 26(4):413-420.
[5] Choi J H, Kim D H. Stress characteristics and fatigue crack behavior of the longitudinal rib-to-cross beam joints in an orthotropic steel deck[J]. Advances in Structural Engineering, 2008, 11(2):189-198.
[6] Robert J. Dexter, Justin M. Ocel. Manual for Repair and Retrofit of Fatigue Cracks in Steel Bridges[M]. New York:Federal Highway Administration, 2013.
[7] 陈开利. 正交异性钢桥面板的疲劳裂纹处治[J]. 世界桥梁, 2016, 44(1):70-76. Chen Kaili. Fatigue crack treatment of orthotropic steel bridge deck[J]. World Bridges, 2016, 44(1):70-76. (in Chinese)
[8] 刘飞. 单面螺栓连接及装配式钢结构节点理论与试验研究[D]. 南京:东南大学, 2015. Liu Fei. Theoretical and experimental research of one-side bolt connection and prefabricated steel structure nodes[D]. Nanjing:Southeast University, 2015. (in Chinese)
[9] 刘益铭, 张清华, 崔闯, 等. 正交异性钢桥面板三维疲劳裂纹扩展数值模拟方法[J]. 中国公路学报, 2016, 29(7):89-95. Liu Yiming, Zhang Qinghua, Cui Chuang, et al. Numerical simulation methods for 3D fatigue crack growth of steel orthotropic bridge deck[J]. China Journal of highway and transport, 2016, 29(7):89-95. (in Chinese)
[10] 土木学会鋼構造委員会. 厚板溶接継手に関する調査研究小委員会報告書[R]. 东京, 2007. Civil Engineering Society of Steel Structures. Report of the subcommittee on plate welding joints[R]. Tokyo, 2007. (in Chinese)
[11] 崔闯, 卜一之, 张清华. 正交异性钢桥面板焊缝疲劳性能评估方法[J]. 中国公路学报, 2015, 28(7):52-57. Cui Chuang, Bu Yizhi, Zhang Qinghua. Fatigue property assessment methods for weld joint in orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2015, 28(7):52-57. (in Chinese)
[12] 李小珍, 任伟平, 卫星, 等. 现代钢桥新型结构型式及其疲劳问题分析[J]. 钢结构, 2006, 21(5):50-55. Li Xiaozhen, Ren Weiping, Wei Xing, et al. New structural types and fatigue problems of modern steel bridge structures[J]. Steel Construction, 2006, 21(5):50-55. (in Chinese)
[13] 张清华, 卜一之, 李乔. 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报, 2017, 30(3):14-30. Zhang Qinghua, Bu Yizhi, Li Qiao. Review on Fatigue Research of Orthotropic Steel Bridge Deck[J]. China Journal of highway and transport, 2017, 30(3):14-30.
[14] BS 7910:2005, Guide to methods for assessing the acceptability of flaws in metallic structures[S]. British, 2005.
[15] 童乐为, 顾敏, 朱俊, 等. 基于断裂力学的圆钢管混凝土T型焊接节点疲劳寿命预测[J]. 工程力学, 2013, 30(4):331-336. Tong Lewei, Gu Min, Zhu Jun, et al. Prediction of fatigue life for welded t-joints of concrete-filled circular hollow sections based on fracture mechanics[J]. Engineering Mechanics, 2013, 30(4):331-336. (in Chinese)
[16] 张行, 崔德渝, 孟庆春, 等. 断裂与损伤力学[M]. 北京:北京航空航天大学出版社, 2006. Zhang Hang, Cui Deyu, Meng Qingchun, et al. Fracture and damage mechanics[M]. Beijing:Beihang University Press, 2006. (in Chinese)
[1] 黄云, 张清华, 郭亚文, 卜一之. 钢桥面板纵肋与横隔板焊接细节表面缺陷及疲劳效应研究[J]. 工程力学, 2019, 36(3): 203-213,223.
[2] 施洲, 张勇, 杨仕力, 蒲黔辉. 铁路正交异性桥面加劲肋-横隔板局部疲劳受力特性研究[J]. 工程力学, 2019, 36(2): 124-133.
[3] 王综轶, ZHANG Yun-feng, 王元清, 杜新喜, 袁焕鑫. 交通信号支撑结构疲劳裂纹扩展有限元分析[J]. 工程力学, 2018, 35(9): 180-187.
[4] 曹磊, 陈伯望. 胶合木梁抗剪性能研究综述[J]. 工程力学, 2018, 35(6): 1-5,14.
[5] 尹飞, 周晖, 王元清, 廖小伟, 杨璐. A572 Gr.50厚板对接焊缝断裂性能研究[J]. 工程力学, 2018, 35(6): 42-51.
[6] 王珊. 基于Kirchhoff板中裂纹尖端辛本征解的有限元应力恢复方法[J]. 工程力学, 2018, 35(5): 10-16.
[7] 牛彦泽, 徐业鹏, 黄丹. 双轴动载作用下脆性裂纹扩展问题的近场动力学建模与分析[J]. 工程力学, 2018, 35(10): 249-256.
[8] 平学成, 吴卫星, 陈梦成, 程里朋. 铆接界面端三维奇异性应力场的研究[J]. 工程力学, 2017, 34(6): 226-235.
[9] 王元清, 廖小伟, 周晖, 石永久, 陈健陵, 叶国平. 基于SINTAP-FAD方法的含裂纹缺陷钢结构构件安全性评定研究[J]. 工程力学, 2017, 34(5): 42-51.
[10] 秦洪远, 黄丹, 刘一鸣, 章青. 基于改进型近场动力学方法的多裂纹扩展分析[J]. 工程力学, 2017, 34(12): 31-38.
[11] 李戎, 梁斌, NODA Nao-Aki. 基于临界应力强度因子的胶接对接接头抗拉强度简便预测方法[J]. 工程力学, 2017, 34(11): 218-224.
[12] 黄凯, 尹函彬, 孙庆平. 红外热像技术测量I型裂纹应力强度因子的研究[J]. 工程力学, 2017, 34(11): 231-239.
[13] 刘学聪, 章青, 夏晓舟. 一种新型裂尖加强函数的显式动态扩展有限元法[J]. 工程力学, 2017, 34(10): 10-18.
[14] 傅宇光, 童乐为, 刘博. 基于Beach Marking方法的钢结构疲劳裂纹检测研究[J]. 工程力学, 2016, 33(8): 93-100,131.
[15] 李建波, 陈白斌, 林皋. 基于水平集算法的扩展比例边界有限元法研究[J]. 工程力学, 2016, 33(8): 8-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日