工程力学 ›› 2019, Vol. 36 ›› Issue (6): 202-210.doi: 10.6052/j.issn.1000-4750.2018.05.0287

• 土木工程学科 • 上一篇    下一篇

自复位放大位移型SMA阻尼器优化设计方法研究

黄宙1, 李宏男1,2, 付兴1   

  1. 1. 大连理工大学建设工程学部, 大连 116024;
    2. 沈阳建筑大学土木工程学院, 沈阳 110168
  • 收稿日期:2018-05-29 修回日期:2018-09-05 出版日期:2019-06-25 发布日期:2019-05-31
  • 通讯作者: 付兴(1988-),男,辽宁葫芦岛人,讲师,博士,主要从事大跨高耸结构环境荷载致灾研究(E-mail:fuxing@dlut.edu.cn). E-mail:fuxing@dlut.edu.cn
  • 作者简介:黄宙(1989-),男,湖北襄阳人,博士生,主要从事结构振动控制研究(E-mail:huangzhou0801@163.com);李宏男(1957-),男,辽宁沈阳人,教授,博士,长江学者,主要从事工程结构防灾减灾及健康监测研究(E-mail:hnli@dlut.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51708089,51738007,51421064);国家重点研发计划项目(2016YFC0701108)

OPTIMUM DESIGN OF A RE-CENTERING DEFORMATION-AMPLIFIED SMA DAMPER

HUANG Zhou1, LI Hong-nan1,2, FU Xing1   

  1. 1. Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China;
    2. School of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168, China
  • Received:2018-05-29 Revised:2018-09-05 Online:2019-06-25 Published:2019-05-31

摘要: 该文利用形状记忆合金(SMA)的超弹特性提出了一种新型自复位放大位移型SMA阻尼器(re-centeringdeformation-amplified SMA damper,RDASD)。该阻尼器可将位移变形根据实际工程需要进行放大,通过限制放大以后的位移充分发挥SMA材料的耗能能力。首先建立了该阻尼器的恢复力模型,并通过试验进行了验证。基于SMA材料的旗帜型恢复力模型,分析了预变形、超弹性拉伸位移、刚度和长度四个参数对该阻尼器耗能系数的影响规律。为实现最佳耗能和减震控制效果,提出了该阻尼器的设计准则和性能优化方法。最后以某三层钢框架结构为例,分析了有控和无控两种工况下结构在地震动作用下的动力响应,验证了该阻尼器的减震效果。

关键词: 结构振动控制, 形状记忆合金(SMA), 恢复力模型, 自复位, 耗能系数

Abstract: This paper presents an innovative re-centering deformation-amplified shape memory alloy (SMA) damper (RDASD) by utilizing the superelastic property of SMA materials. The damper can amplify the displacement deformation according to practical engineering requirements and then fully exploit the energy dissipation capacity of the superelastic SMA materials by restricting the amplified displacement. A theoretical model of the RDASD was proposed and then cyclic tensile-compressive tests were conducted to verify the accuracy of the model. Based on the flag force-restoring model of the SMA material, the influences of pre-deformation, superelastic displacement, stiffness and length of the SMA wires on the energy dissipation coefficient of the damper were analyzed. To achieve optimal energy consumption and seismic control effect, the design criterion and performance optimization method of the damper were presented. Finally, time-history analysis with and without this damper on a 3-layer steel frame was presented, which validated the control effect of the damper.

Key words: structural vibration control, shape memory alloy (SMA), theoretical model, re-centering, energy dissipation coefficient

中图分类号: 

  • TU352.1
[1] 任文杰, 李宏男, 宋钢兵, 等. 新型自复位SMA阻尼器对框架结构减震控制的研究[J]. 土木工程学报, 2013, 46(6):14-20. Ren Wenjie, Li Hongnan, Song Gangbing, et al. Study on seismic response control of frame structure using innovative re-centring SMA damper[J]. China Civil Engineering Journal, 2013, 46(6):14-20. (in Chinese)
[2] 卢德辉, 周云, 邓雪松, 等. 钢管铅阻尼器构造优化及模拟分析[J]. 工程力学, 2017, 34(3):76-83. Lu Dehui, Zhou Yun, Deng Xuesong, et al. Optimization of configuration and finite element modeling for lead-filled steel tube dampers[J]. Engineering Mechanics, 2017, 34(3):76-83. (in Chinese)
[3] 吴从晓, 周云, 邓雪松. 钢铅粘弹性阻尼器试验研究[J]. 工程力学, 2012, 29(3):150-156. Wu Congxiao, Zhou Yun, Deng Xuesong. Experimental study on steel-lead viscoelastic damper[J]. Engineering Mechanics, 2012, 29(3):150-156. (in Chinese)
[4] 任文杰, 李宏男. 单自由度SMA阻尼结构在高斯白噪声激励下的平稳随机振动分析[J]. 工程力学, 2014, 31(2):35-40. Ren Wenjie, Li Hongnan. Analyses of stationary random vibration of single-degree-of-freedom structure with shape memory alloy damper subjected to Gaussian white noise excitation[J]. Engineering Mechanics, 2014, 31(2):35-40. (in Chinese)
[5] 任文杰, 王利强, 马志成, 等. 形状记忆合金-摩擦复合阻尼器力学性能研究[J]. 建筑结构学报, 2013, 34(2):83-90. Ren Wenjie, Wang Liqiang, Ma Zhicheng, et al. Investigation on mechanical behavior of innovative shape memory alloy-friction damper[J]. Journal of Building Structures, 2013, 34(2):83-90. (in Chinese)
[6] Song G, Ma N, Li H N. Applications of shape memory alloys in civil structures[J]. Engineering Structures, 2006, 28(9):1266-1274.
[7] 崔迪, 李宏男, 宋钢兵. 形状记忆合金混凝土梁力学性能试验研究[J]. 工程力学, 2010, 27(2):117-123. Cui Di, Li Hongnan, Song Gangbing. Behavior of SMA reinforced concrete beam[J]. Engineering Mechanics, 2010, 27(2):117-123. (in Chinese)
[8] Qian H, Li H N, Song G B, et al. Recentering shape memory alloy passive damper for structural vibration control[J]. Mathematical Problems in Engineering, 2013, 2013(3):1-13.
[9] Qian H, Li H N, Song G B. Experimental investigations of building structure with a superelastic shape memory alloy friction damper subject to seismic loads[J]. Smart Materials & Structures, 2016, 25(12):125026.
[10] 孙彤, 李宏男. 新型多维形状记忆合金阻尼器的试验研究[J]. 工程力学, 2018, 35(3):178-185. Sun Tong, Li Hongnan. Experimental investigation of an innovative multidimensional SMA damper[J]. Engineering Mechanics, 2018, 35(3):178-185. (in Chinese)
[11] Zhang Y, Zhu S. A shape memory alloy-based reusable hysteretic damper for seismic hazard mitigation[J]. Smart Materials & Structures, 2007, 16(5):1603-1613.
[12] Zhang Y F, Zhu S Y. Seismic response control of building structures with superelastic shape memory alloy wire dampers[J]. Journal of Engineering Mechanics-ASCE, 2008, 134(3):240-251.
[13] Dolce M, Cardone D, Marnetto R. Implementation and testing of passive control devices based on shape memory alloys[J]. Earthquake Engineering & Structural Dynamics, 2000, 29(7):945-968.
[14] Dieng L, Helbert G, Chirani S A, et al. Use of shape memory alloys damper device to mitigate vibration amplitudes of bridge cables[J]. Engineering Structures, 2013, 56(6):1547-1556.
[15] Li H N, Liu M M, Fu X. An innovative re-centering SMA-lead damper and its application to steel frame structures[J]. Smart Materials & Structures, 2018, 27(7):075029.
[16] Parulekar Y M, Reddy G R, Vaze K K, et al. Seismic response attenuation of structures using shape memory alloy dampers[J]. Structural Control & Health Monitoring, 2012, 19(1):102-119.
[17] 李宏男, 钱辉, 宋钢兵, 等. 一种新型SMA阻尼器的试验和数值模拟研究[J]. 振动工程学报, 2008, 21(2):179-184. Li Hongnan, Qian Hui, Song Gangbing, et al. A type of shape memory alloy damper:Design, experiment and numerical simulation[J]. Journal of Vibration Engineering, 2008, 21(2):179-184. (in Chinese)
[18] Li H N, Huang Z, Fu X, et al. A re-centering deformation-amplified shape memory alloy damper for mitigating seismic response of building structures[J]. Structural Control & Health Monitoring, 2018, 25(9):e2233.
[19] Ren W J, Li H N, Song G B. A one-dimensional strain-rate-dependent constitutive model for superelastic shape memory alloys[J]. Smart Materials & Structures, 2007, 16(1):191-197.
[20] 薛素铎, 董军辉, 卞晓芳, 等. 一种新型形状记忆合金阻尼器[J]. 建筑结构学报, 2005, 26(3):45-50. Xue Suduo, Dong Junhui, Bian Xiaofang, et al. A new type of shape memory alloy damper[J]. Journal of Building Structures, 2005, 26(3):45-50. (in Chinese)
[21] Li H, Mao C X, Ou J P. Experimental and theoretical study on two types of shape memory alloy devices[J]. Earthquake Engineering & Structural Dynamics, 2008, 37(3):407-426.
[22] 王振营, 毛晨曦, 张亮泉. 新型SMA耗能连梁框架剪力墙结构抗震性能研究[J]. 土木工程学报, 2012, 45(增刊2):53-58. Wang Zhenying, Mao Chenxi, Zhang Liangquan. Seismic performance of reinforced concrete frame-shear wall structure with novel shape memory alloy dampers in coupling beams[J]. China Civil Engineering Journal, 2012, 45(Suppl 2):53-58. (in Chinese)
[23] Morgen B G, Kurama Y C. Seismic design of friction-damped precast concrete frame structures[J]. Journal of Structural Engineering-ASCE, 2007, 133(11):1501-1511.
[24] 邢德进, 汪明栋. SMA阻尼器设计及框架结构地震反应控制分析[J]. 工程抗震与加固改造, 2011, 33(1):43-48. Xing Dejin, Wang Mingdong. Design of SMA damper and analysis on seismic control of frame structure[J]. Earthquake Resistant Engineering and Retrofitting, 2011, 33(1):43-48. (in Chinese)
[25] GB 50011-2001, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2001. GB 50011-2001, Code for seismic design of buildings[S]. Beijing:China Architecture & Building Press, 2001. (in Chinese)
[1] 隋䶮, 薛建阳, 董金爽, 张锡成, 谢启芳, 白福玉. 附设粘滞阻尼器的混凝土仿古建筑梁-柱节点恢复力模型试验研究[J]. 工程力学, 2019, 36(S1): 44-53.
[2] 徐龙河, 孙雨生, 要世乾, 李忠献. 装配式自复位耗能支撑恢复力模型与试验验证[J]. 工程力学, 2019, 36(6): 119-127,146.
[3] 卢啸, 吕泉林. 自复位粘弹性腹杆的力学原理与滞回性能研究[J]. 工程力学, 2019, 36(6): 138-146.
[4] 罗一帆, 孙洪鑫, 王修勇. 电磁调谐双质阻尼器的H2参数优化及对结构减震分析[J]. 工程力学, 2019, 36(4): 89-99.
[5] 曹琛, 郑山锁, 胡卫兵, 赵彦堂, 郑捷, 周炎. 近海大气环境下锈蚀RC框架梁恢复力模型研究[J]. 工程力学, 2019, 36(4): 125-134.
[6] 徐龙河, 武虎. 设置自复位耗能支撑的斜拉桥横向抗震性能研究[J]. 工程力学, 2019, 36(4): 177-187.
[7] 陈云, 陈超, 蒋欢军, 万志威, 刘涛. O型钢板-高阻尼黏弹性复合型消能器的力学性能试验与分析[J]. 工程力学, 2019, 36(1): 119-128.
[8] 丁杰, 邹昀, 蔡鑫, 李天祺, 郑黎君, 赵桃干. 损伤可控型钢框架边节点的试验研究[J]. 工程力学, 2018, 35(S1): 107-112.
[9] 肖水晶, 徐龙河, 卢啸. 具有复位功能的钢筋混凝土剪力墙设计与性能研究[J]. 工程力学, 2018, 35(8): 130-137.
[10] 徐龙河, 王坤鹏, 谢行思, 李忠献. 具有复位功能的阻尼耗能支撑滞回模型与抗震性能研究[J]. 工程力学, 2018, 35(7): 39-46.
[11] 崔瑶, 李浩, 刘浩, 王晶秋, 唐贞云. 外露式钢柱脚恢复力特性分析[J]. 工程力学, 2018, 35(7): 232-242.
[12] 刘明明, 李宏男, 付兴. 一种新型自复位SMA-剪切型铅阻尼器的试验及其数值分析[J]. 工程力学, 2018, 35(6): 52-57,67.
[13] 武大洋, 吕西林. 基于分布参数模型的复合自复位结构参数分析[J]. 工程力学, 2018, 35(6): 78-87.
[14] 韩强, 贾振雷, 王晓强, 黄超. 内嵌碟簧型自复位防屈曲支撑性能试验及其恢复力模型研究[J]. 工程力学, 2018, 35(6): 144-150,190.
[15] 李灿军, 周臻, 谢钦. 摩擦耗能型SMA杆自复位梁柱节点滞回性能分析[J]. 工程力学, 2018, 35(4): 115-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张冬娟;崔振山;李玉强;阮雪榆. 平面应变板料拉弯成形回弹理论分析[J]. 工程力学, 2007, 24(7): 0 -071 .
[2] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[3] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[4] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[5] 于琦;孟少平;吴京;郑开启. 预应力混凝土结构组合式非线性分析模型[J]. 工程力学, 2011, 28(11): 130 -137 .
[6] 张慕宇;杨智春;王乐;丁燕. 复合材料梁结构损伤定位的无参考点互相关分析方法[J]. 工程力学, 2011, 28(11): 166 -169 .
[7] 郭佳民;董石麟;袁行飞. 随机缺陷模态法在弦支穹顶稳定性计算中的应用[J]. 工程力学, 2011, 28(11): 178 -183 .
[8] 祝效华;王宇;童华;刘应华. 基于弹塑性力学的油气井打捞公锥造扣全过程分析和评价[J]. 工程力学, 2011, 28(11): 184 -189 .
[9] 黄友钦;顾明. 风雪耦合作用下单层柱面网壳的动力稳定[J]. 工程力学, 2011, 28(11): 210 -217, .
[10] 袁振伟;王海娟;岳希明;褚福磊. 密封进口涡动系数对转子系统动力学性能的影响[J]. 工程力学, 2011, 28(11): 231 -236 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日