工程力学 ›› 2019, Vol. 36 ›› Issue (6): 175-182.doi: 10.6052/j.issn.1000-4750.2018.05.0279

• 土木工程学科 • 上一篇    下一篇

试论结构工程中的大数据:范式、技术与实例分析

陈隽1,2   

  1. 1. 同济大学土木工程学院, 上海 200092;
    2. 土木工程防灾国家重点实验室, 同济大学, 上海 200092
  • 收稿日期:2018-05-24 修回日期:2018-12-17 出版日期:2019-06-25 发布日期:2019-05-31
  • 通讯作者: 陈隽(1972-),男,河南人,教授,博士,博导,从事结构振动舒适度、结构工程大数据研究(E-mail:cejchen@tongji.edu.cn). E-mail:cejchen@tongji.edu.cn
  • 基金资助:
    NSFC-广东大数据中心联合基金重点支持项目(U1711264)

A DISCUSSION ON BIG DATA IN STRUCTURAL ENGINEERING: PARADIGM, TECHNOLOGY AND EXAMPLE

CHEN Jun1,2   

  1. 1. College of Civil Engineering, Tongji University, Shanghai 200092, China;
    2. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
  • Received:2018-05-24 Revised:2018-12-17 Online:2019-06-25 Published:2019-05-31

摘要: 源自信息科学的大数据思想是当前科学和技术领域的热点话题,大数据技术的推广和应用已经迅速上升到了国家战略的高度,给包括结构工程在内的各个学科带来了新的历史性发展机遇。该文尝试结合大数据概念及其技术特征,着重从研究范式转变的角度,探讨大数据思维和大数据技术应用于结构工程领域所带来的冲击、机遇和挑战,在厘清一些模糊认识的同时,结合第三代结构设计理论的发展讨论了大数据技术可能的应用场景,并以建筑物活荷载研究为例进行了分析。

关键词: 大数据, 结构工程, 范式变化, 第三代结构设计理论, 活荷载

Abstract: Big data is no doubt the most popular topic currently in science and technology field. Application of big data has already reached the level as high as a national strategy. It brings new historical development opportunities to various interdisciplinary fields including structural engineering. This paper discusses, from the point of view of research paradigm shift, the impacts, problems and challenges along with the introduction of big data concepts and technologies to structural engineering. Potential applications of big data in structural engineering are then discussed according to the development trend of the third generation of structural design theory. Finally, an example is given which shows the application of big data idea for investigating live loads in a building.

Key words: big data, structural engineering, paradigm shift, third generation of structural design theory, live loads

中图分类号: 

  • TP312+
[1] 阿尔文·托勒夫, 著. 第三次浪潮[M]. 黄明坚, 译. 北京:中信出版社, 2006:19-25. Alvin Toffler. The third wave[M]. Translate by Huang Mingjian. Beijing:Citic Press, 2006:19-25. (in Chinese)
[2] Nature. Big Data[DB]. http://www.nature.com/news/specials/bigdata/index.html, 2008.
[3] Reichman O J, Jones M B, Schildhauer M P. Challenges and opportunities of open data in ecology[J]. Science, 2011, 331(6018):703-705.
[4] 李学龙, 龚海刚. 大数据系统综述[J]. 中国科学:信息科学, 2015, 45(1):1-44. Li Xuelong, Gong Haigang. A survey on big data system[J]. Scientia Sinica:Informationis, 2015, 45(1):1-44. (in Chinese)
[5] Thomas S K. The structure of scientific revolutions[M]. 3rd ed, Chicago:University of Chicago Press, 1970:10.
[6] Haldar A, Mehrabian A. Structural engineering in the new millennium:opportunities and challenges[J]. Structural Survey, 2008, 26(4):279-301.
[7] Ross B C. Probabilistic load duration model for live loads[J]. Journal of Structural Engineering, 1983, 109(4):859-874.
[8] Asantey S B A. Factory and warehouse live load survey[J]. Building and Environment, 1996, 31(2):167-178.
[9] GB 50009-2012, 建筑结构荷载规范[S]. 北京:建筑工业出版社, 2012. GB 50009-2012, Load code for the design of building structures[S]. Beijing:China Architecture Industry Press, 2012. (in Chinese)
[10] 陈淮, 葛素娟, 李静斌, 孙增寿. 中原地区住宅建筑结构活荷载调查与统计分析[J]. 土木工程学报, 2006, 39(5):29-34. Chen Huai, Ge Sujuan, Li Jingbin, Sun Zengshou. Survey and statistical analysis of live loads of residential buildings in the central plains region[J]. China Civil Engineering Journal, 2006, 39(5):29-34. (in Chinese)
[11] 高若凡, 李杰. 中日建筑规范楼面活荷载对比[J]. 结构工程师, 2016, 32(2):84-91. Gao Ruofan, Li Jie. Comparison of the floor live load between Chinese and Japanese building codes[J]. Structural Engineer, 2016, 32(2):84-91. (in Chinese)
[12] 贾存龙. 建筑楼面活荷载的小样本统计推断[D]. 陕西:西安建筑科技大学, 2013. Jia Cunlong. Statistical inference methods for characteristic value of floor live load on minor sample[D]. Shaanxi:Xi'an University of Architecture and Technology, 2013. (in Chinese)
[13] 杨庆山, 田玉基, 陈波, 等. 行业标准《屋盖结构风荷载标准》的主要内容[J]. 工程力学, 2018, 35(7):1-6. Yang Qingshan, Tian Yuji, Chen Bo, et al. Main contents of the standard for wind loads on roof sructures[J]. Engineering Mechanics, 2018, 35(7):1-6. (in Chinese)
[14] Hilbert M, Lopez P. The world's technology capacity to store, communicate and compute information[J]. Science, 2011, 332(6025):60-65.
[15] Futurescoutllc. Emerging science and technology trends (2016-2045)-A synthesis of leading forecasts report[R]. http://www.futurescoutllc.com/wp-content/uploads/2016/09/2016_SciTechReport_16June2016.pdf, 2016.
[16] MIT technology review[DB]. https://www.technologyreview.com.
[17] Zhang Q C, Yang L T, Chen Z K. A survey on deep learning for big data[J]. Information Fusion, 2018, 42:146-157.
[18] Yang C W, Huang Q Y, Li Z L, et al. Big data and cloud computing:Innovation opportunities and challenges[J]. International Journal of Digital Earth, 2017, 10(1):41.
[19] Ginsberg J, Mohebbi M H, Patel R S, et al. Detecting influenza epidemics using search engine query data[J]. Nature, 2009, 457:1012-1014.
[20] 维克托·迈尔-舍恩伯格. 大数据时代[M]. 杭州:浙江人民出版社, 2012:28, 50. Victor M S. Big data:a revolution that will transform how we live, work and think[M]. Hangzhou:Zhejiang People's Publishing House, 2012:28, 50. (in Chinese)
[21] Kathryn H. Artificial intelligence[M]. Minneapolis, Minnesota:Abdo Publishing, 2016:76.
[22] 马智亮, 刘世龙, 刘喆. 大数据技术及其在土木工程中的应用[J]. 土木建筑工程信息技术, 2015, 7(5):45-49. Ma Zhiliang, Liu Shilong, Liu Zhe. Big data techniques and its applications in civil engineering[J]. Journal of Information Technology in Civil Engineering and Architecture, 2015, 7(5):45-49. (in Chinese)
[23] 霍林生. 大数据时代结构工程发展新趋势的几点思考[J]. 土木建筑工程信息技术, 2016, 8(5):111-114. Huo Linsheng. Several considerations about the development trend of structural engineering in the big data time[J]. Journal of Information Technology in Civil Engineering and Architecture, 2016, 8(5):111-114. (in Chinese)
[24] Alavi A H, Gandomi A H. Big data in civil engineering[J]. Automation in Construction, 2017(79):1-2.
[25] Cai G W, Mahadevan S. Big data analytics in uncertainty quantification:Application to structural diagnosis and prognosis[J]. Journal of Risk and Uncertainty in Engineering Systems Part A-Civil Engineering, 2018:4(1):04018003.
[26] Kostic B, Gul M. Vibration-based damage detection of bridges under varying temperature effects using time-series analysis and artificial neural networks[J]. Journal of Bridge Engineering, 2017, 22(10):04017065.
[27] Kifokeris D, Xenidis Y. Constructability:Outline of past, present, and future research[J]. Journal of Construction Engineering and Management, 2017, 143(8):04017035.
[28] Bilal M, Oyedele L O, Qadir J, et al. Big Data in the construction industry:A review of present status, opportunities, and future trends[J]. Advanced Engineering Informatics, 2016, 30(3):500-521.
[29] Lu X Z, Zeng X, Xu Z, et al. Improving the accuracy of near-real-time seismic loss estimation using post-earthquake remote sensing images[J]. Earthquake Spectra, 2018, 34(3):1219-1245.
[30] McKinsey Global Institute. Big Data:The next frontier for innovation, competition and productivity[R]. Technical Report. https://www.mckinsey.com/businessfunctions/digital-mckinsey/our-insights/big-data-the-next-frontier-for-innovation, 2011.
[31] 李杰. 论第三代结构设计理论[J]. 同济大学学报(自然科学版), 2017, 45(5):617-632. Li Jie. On the third generation of structural design theory[J]. Journal of Tongji University (Natural Science), 2017, 45(5):617-632. (in Chinese)
[32] Trifunac, Mihailo D. Site conditions and earthquake ground motion-a review[J]. Soil Dynamics and Earthquake Engineering, 2016, 90:88-100.
[33] Reilly J, Dashti S, Ervsti M, et al. Mobile phones as seismologic sensors:automating data extraction for the iShake system[J]. Transactions on Automation Science and Engineering, 2013, 10(20):242-251.
[34] Feng M, Fukuda Y, Mizuta M, et al. Citizen sensors for SHM:use of accelerometer data from Smartphones[J]. Sensors, 2015, 15(2):2980-2998.
[35] 韩瑞聪. 基于智能手机的多参数监测技术及地震应急响应研究[D]. 大连:大连理工大学, 2018. Han Ruicong. Multi-parameter monitoring technology based on smart phone and earthquake emergency response research[D]. Dalian:Dalian University of Technology, 2018. (in Chinese)
[36] Chen J, Li Y, Li R. Big data methodology for structure live load investigation:a case study[C]. Hang Zhou:Zhe Jiang University Press, 2018:555-556.
[1] 张建春, 张大山, 董毓利, 王卫华. 火灾下钢-混凝土组合梁内力变化的试验研究[J]. 工程力学, 2019, 36(6): 183-192,210.
[2] 梁洪超, 楼文娟, 丁浩, 卞荣. 非线性振型结构HFFB试验模态力计算方法及不确定性分析[J]. 工程力学, 2019, 36(3): 71-78.
[3] 姜志琳, 赵均海, 吕美彤, 张磊. 基于线性强化模型的双层厚壁圆筒极限内压统一解[J]. 工程力学, 2018, 35(S1): 6-12.
[4] 武启剑, 王臣, 支旭东. 玻璃纤维增强短钢管构件轴压试验和破坏模式仿真研究[J]. 工程力学, 2018, 35(8): 184-191.
[5] 王景玄, 王文达, 李华伟. 钢管混凝土平面框架子结构抗连续倒塌精细有限元分析[J]. 工程力学, 2018, 35(6): 105-114.
[6] 刘娇, 刘敬敏, 余波, 杨绿峰. 工程结构体系可靠度分析的最新研究进展[J]. 工程力学, 2017, 34(增刊): 31-37.
[7] 易伟建, 刘彪. 混凝土板柱节点冲切承载力的极限分析[J]. 工程力学, 2017, 34(8): 125-132,143.
[8] 王南, 史庆轩. 高强箍筋RC梁-柱节点抗剪模型及非线性分析[J]. 工程力学, 2017, 34(7): 89-96.
[9] 曹胜涛, 李志山. 约束混凝土单轴弹塑性损伤本构模型[J]. 工程力学, 2017, 34(11): 116-125.
[10] 罗璐, 刘问, 徐世烺, 任贇跃. 基于连续损伤力学的UHTCC疲劳损伤扩展模型研究[J]. 工程力学, 2017, 34(1): 22-27.
[11] 殷占忠, 任亚歌, 陈伟, 梁亚雄. 可替换独立耗能梁段抗震性能分析[J]. 工程力学, 2016, 33(增刊): 207-213.
[12] 宋琦, 杨任, 陈璞. 一种新的结构修改算法及其在工程设计中的应用[J]. 工程力学, 2016, 33(7): 1-6.
[13] 朱兰影, 王志军, 刘界鹏. 蝶撑桁架梁跨中挠度的计算方法研究[J]. 工程力学, 2016, 33(5): 184-192.
[14] 刘成清, 倪向勇, 杨万理, 李福海, 赵世春. 基于能量法的被动柔性棚洞防护结构设计理论[J]. 工程力学, 2016, 33(11): 95-104.
[15] 钮鹏, 金春福. 几何缺陷影响下的CFRP-方钢管极限承载力解析解[J]. 工程力学, 2015, 32(增刊): 322-326.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日