工程力学 ›› 2019, Vol. 36 ›› Issue (6): 157-163,182.doi: 10.6052/j.issn.1000-4750.2018.05.0268

• 土木工程学科 • 上一篇    下一篇

高延性纤维增强水泥基复合材料(ECC)连续梁模型在地震荷载下的响应及其敏感性分析

古泉1, 张宁1, 郑越2   

  1. 1. 厦门大学土木工程系, 福建, 厦门 361005;
    2. 同济大学桥梁工程系, 上海 200092
  • 收稿日期:2018-05-24 修回日期:2018-12-03 出版日期:2019-06-25 发布日期:2019-05-31
  • 通讯作者: 郑越(1975-),男,山东人,助理教授,博士,硕导,主要从事桥梁结构的抗震与减震研究(E-mail:yzheng@tongji.edu.cn). E-mail:yzheng@tongji.edu.cn
  • 作者简介:古泉(1974-),男,新疆人,教授,博士,博导,主要从事非线性结构体系地震动力分析等(E-mail:quangu@xmu.edu.cn);张宁(1995-),男,山东人,硕士生,主要从事结构分析(E-mail:zhangningswing@outlook.com).
  • 基金资助:
    国家重点研发计划资助项目(2016YFC0701106);国家自然科学基金项目(51261120376,51578473);浦江人才计划资助项目(16PJ1409600)

RESPONSE AND SENSITIVITY ANALYSIS OF CONTINUOUS BEAM MODEL USING ENGINEERED CEMENTITIOUS COMPOSITE (ECC) UNDER SEISMIC LOADING

GU Quan1, ZHANG Ning1, ZHENG Yue2   

  1. 1. Department of Civil Engineering, Xiamen University, Xiamen, Fujian 361005, China;
    2. Department of Bridge Engineering, Tongji University, Shanghai 200092, China
  • Received:2018-05-24 Revised:2018-12-03 Online:2019-06-25 Published:2019-05-31

摘要: 综述了高延性纤维增强水泥基复合材料(engineered cementitious composite,ECC材料)在拉伸荷载下呈现高延展性等特点,常用于弥补普通混凝土抗拉性能不足的缺点。该文基于现有的ECC本构模型,利用非线性有限元平台OpenSees对已有的算法进行二次开发,利用OpenSees建立ECC连续梁模型,并将模拟结果与试验结果进行了比较分析。该文基于直接微分法(direct differentiation method,DDM),推导实现ECC材料参数的敏感性算法,并将DDM计算结果与有限差分法(finite difference method,FDM)结果进行对比,验证了DDM分析算法的优越性。该文利用连续梁算例,体现敏感性分析的重要性,并将模拟结果进行分析总结。

关键词: 有限元, 敏感性分析, ECC本构, OpenSees, 连续梁

Abstract: The ECC material exhibit high ductility under tensile load and are frequently used as substitute of concrete. After reviewing the current research on the existing ECC constitutive model, this paper utilized the nonlinear finite element platform OpenSees and conduct secondary development on the established algorithm. Using the software to simulate the behavior of the ECC continuous beam model, comparison is made between the simulation results and the experimental results. Furthermore, this paper derives the sensitivity algorithm for ECC material parameters based on the DDM. The DDM calculation results is compared with the FDM results, which further verified the superiority of DDM. This paper also present the simulation results of the continuous beam as a case study to demonstrate the importance of sensitivity analysis.

Key words: finite element analysis, sensitivity analysis, ECC constitutive model, OpenSees, continuous beam

中图分类号: 

  • U442.55
[1] LI Victor C. 高延性纤维增强水泥基复合材料的研究进展及应用[J]. 硅酸盐学报, 2007, 35(4):531-536. LI Victor C.Progress and application of engineered cementitious composites[J]. Journal of the Chinese Ceramic Society,2007, 35(4):531-536. (in Chinese)
[2] Stavroulakis G E. Parameter sensitivity in nonlinear mechanics. Theory and finite element computations:by Kleiber M, Antúney H, Hien T D, Kowalczyck P, (Wiley, Chichester, 1997)[J]. European Journal of MechanicsA/Solids, 1998, 17(4):702-703.
[3] Conte J P. Finite element response sensitivity analysis in earthquake engineering[J]. Earthquake Engineering Frontiers in the New Millennium, 2001:395-401.
[4] Conte J P, Vijalapura P K, Meghella M. Consistent finite-element response sensitivity analysis[J]. Journal of Engineering Mechanics, 2003, 129(12):1380-1393.
[5] Ditlevsen O, Madsen H O. Structural reliability methods[M]. New York:Wiley, 1996.
[6] Zhang Y, Kiureghian A D. Dynamic response sensitivity of inelastic structures[J]. Computer Methods in Applied Mechanics & Engineering, 1993, 108(1-2):23-36.
[7] 丁然, 芶双科, 樊健生, 等. 后浇LSECC装配整体式梁受力性能试验研究[J]. 工程力学, 2018, 35(10):56-65, 74. Ding Ran, Gou Shuangke, Fan Jiansheng, et al. Experimental research on mechanical performance of monolithic precast beams using cast-in-place low-shrinkage engineered cementitious composite[J]. Engineering Mechanics, 2018, 35(10):56-65, 74. (in Chinese)
[8] Han T S, Feenstra P H, Billington S L. Simulation of highly ductile fiber-reinforced cement based composite components under cyclic loading[J]. ACI Structural Journal, 2003, 100(6):749-757.
[9] Li V C, Leung C K Y. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, 1992, 118(11):2246-2264.
[10] Li V C, Stang H, Krenchel H. Micromechanics of crack bridging in fibre-reinforced concrete[J]. Materials & Structures, 1993, 26(8):486-494.
[11] Dhawale A W, Joshi V P. Engineered cementitious composites for structural applications[J]. Journal of Materials in Civil Engineering, 1998, 10(2):66-69.
[12] Fischer G, Li V C. Effect of matrix ductility on deformation behavior of steel reinforced ECC flexural members under reversed cyclic loading conditions[J]. ACI Structural Journal, 2002, 99(6):781-790.
[13] Fischer G, Li V C. Deformation behavior of fiber-reinforced polymer reinforced engineered cementitious composite (ECC) flexural members under reversed cyclic loading conditions[J]. ACI Structural Journal, 2003, 100(1):25-35.
[14] 司炳君, 孙治国, 艾庆华, 等. 钢筋混凝土桥墩滞回性能的有限元参数敏感性分析及模型改进[J]. 工程力学, 2009, 26(1):174-180. Si Bingjun, Sun Zhiguo, Ai Qinghua, et al. Sensitive analysis and model modification for finite element analysis of R/C bridge piers under cyclic loading[J]. Engineering Mechanics, 2009, 26(1):174-180. (in Chinese)
[15] 潘金龙, 何佶轩, 王路平, 等. ECC双轴压力学性能及破坏准则试验研究[J]. 工程力学, 2016, 33(6):186-193. Pan Jinlong, He Jixuan, Wang Luping, et al. Experimental study on mechanical behaviors and failure criterion of engineered cementitious composites under biaxial compression[J]. Engineering Mechanics, 2016, 33(6):186-193. (in Chinese)
[16] Zheng Y, Dong Y. Performance-based assessment of bridges with steel-SMA reinforced piers in a life-cycle context by numerical approach[J]. Bulletin of Earthquake Engineering, 2018:1-22.
[17] Zheng Y, Dong Y, Li Y. Resilience and life-cycle performance of smart bridges with shape memory alloy (SMA)-cable-based bearings[J]. Construction and Building Materials, 2018, 158:389-400.
[18] Conte J P, Barbato M, Spacone E. Finite element response sensitivity analysis using force-based frame models[J]. International Journal for Numerical Methods in Engineering, 2004, 59(13):1781-1820.
[19] Gu Q, Barbato M, Conte J P. Handling of constraints in finite-element response sensitivity analysis[J]. Journal of Engineering Mechanics, 2009, 135(12):1427-1438.
[20] Fenves G L, Filippou F C, Scott M H, et al. Response sensitivity for nonlinear beam column elements[J]. Journal of Structural Engineering, 2004, 130(9):1281-1288.
[21] Haukaas T, Kiureghian A D. Strategies for finding the design point in non-linear finite element reliability analysis[J]. Probabilistic Engineering Mechanics, 2006, 21(2):133-147.
[22] Gu Q, Conte J P, Elgamal A, et al. Finite element response sensitivity analysis of multi-yield-surface J 2, plasticity model by direct differentiation method[J]. Computer Methods in Applied Mechanics & Engineering, 2009, 198(30-32):2272-2285.
[23] Barbato M, Gu Q, Conte J P. Probabilistic push over analysis of structural and soil-structure systems[J]. Journal of Structural Engineering, 2010, 136(11):1330-1341.
[1] 李达, 牟在根. 内嵌VV-SPSW平面钢框架结构抗震性能研究[J]. 工程力学, 2019, 36(S1): 210-216.
[2] 邱天琦, 杨军, 吴志轩, 沈兆普, 梁宇钒. 复理石顺层边坡最危险岩层倾角及简化的单一层面模型[J]. 工程力学, 2019, 36(S1): 217-221,228.
[3] 杨志坚, 韩嘉明, 雷岳强, 赵海龙, 胡嘉飞. 预应力混凝土管桩与承台连接节点抗震性能研究[J]. 工程力学, 2019, 36(S1): 248-254.
[4] 王元清, 乔学良, 贾连光, 张天雄, 蒋庆林. 单调加载下不锈钢结构梁柱栓焊混用节点承载性能分析[J]. 工程力学, 2019, 36(S1): 59-65.
[5] 林德慧, 陈以一. 部分填充钢-混凝土组合柱整体稳定分析[J]. 工程力学, 2019, 36(S1): 71-77,85.
[6] 杨雅斌, 石广玉. 正交异性钢桥面板肋-面板焊缝疲劳验算的应力分析模型评估[J]. 工程力学, 2019, 36(S1): 98-105.
[7] 谢启芳, 张利朋, 王龙, 崔雅珍, 杨柳洁. 拔榫状态下直榫节点滞回性能有限元分析[J]. 工程力学, 2019, 36(S1): 138-143.
[8] 杨浩, 罗帅, 邢国然, 王伟. 杆梁组合结构的有限元分析[J]. 工程力学, 2019, 36(S1): 154-157,169.
[9] 陈恒, 肖映雄, 郭瑞奇. 基于p型自适应有限元法的混凝土骨料模型数值模拟[J]. 工程力学, 2019, 36(S1): 158-164.
[10] 程麦理. 黄土场地桩基横向力学行为数值模拟[J]. 工程力学, 2019, 36(S1): 229-233.
[11] 赵兴乾, 帅长庚, 徐伟, 李正民. 船舶艉部整体隔振系统中轴承载荷增量研究[J]. 工程力学, 2019, 36(S1): 311-315.
[12] 刘岩钊, 尹首浮, 于桂兰. 周期格栅式表面波屏障的设计与性能研究[J]. 工程力学, 2019, 36(S1): 324-328.
[13] 蒋伟, 刘纲. 基于多链差分进化的贝叶斯有限元模型修正方法[J]. 工程力学, 2019, 36(6): 101-108.
[14] 牟犇, 王君昌, 崔瑶, 庞力艺, 松尾真太朗. 一种改进型方钢管柱与钢梁连接节点抗震性能研究[J]. 工程力学, 2019, 36(6): 164-174.
[15] 叶康生, 殷振炜. 平面曲梁面内自由振动有限元分析的p型超收敛算法[J]. 工程力学, 2019, 36(5): 28-36,52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 于琦;孟少平;吴京;郑开启. 预应力混凝土结构组合式非线性分析模型[J]. 工程力学, 2011, 28(11): 130 -137 .
[2] 顾致平;和兴锁;方同. 微分对接条件对次谐共振影响的研究[J]. 工程力学, 2006, 23(4): 62 -66 .
[3] 李艺;赵文;张延年. 系统刚度可靠性分析的加速算法[J]. 工程力学, 2006, 23(3): 17 -20 .
[4] 熊渊博;龙述尧;胡德安. 薄板屈曲分析的局部Petrov-Galerkin方法[J]. 工程力学, 2006, 23(1): 23 -27 .
[5] 罗战友;夏建中;龚晓南. 不同拉压模量及软化特性材料的球形孔扩张问题的统一解[J]. 工程力学, 2006, 23(4): 22 -27 .
[6] 刘耀儒;周维垣;杨强. 三维有限元并行EBE方法[J]. 工程力学, 2006, 23(3): 27 -31 .
[7] 纵智育;辛克贵;王珊. 张力膜结构初始形态分析的曲面四边形单元[J]. 工程力学, 2006, 23(3): 32 -36,2 .
[8] 李永莉;赵志岗;侯志奎. 卷积型加权残值法求解薄板的动力学问题[J]. 工程力学, 2006, 23(1): 43 -46 .
[9] 钟阳;张永山. 矩形悬臂厚板的解析解[J]. 工程力学, 2006, 23(2): 52 -55,4 .
[10] 李雷;谢水生;黄国杰. 应变梯度塑性理论下超薄梁弯曲中尺度效应的数值研究[J]. 工程力学, 2006, 23(3): 44 -48 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日