工程力学 ›› 2019, Vol. 36 ›› Issue (6): 138-146.doi: 10.6052/j.issn.1000-4750.2018.05.0265

• 土木工程学科 • 上一篇    下一篇

自复位粘弹性腹杆的力学原理与滞回性能研究

卢啸, 吕泉林   

  1. 北京交通大学土木建筑工程学院, 北京 100044
  • 收稿日期:2018-05-23 修回日期:2018-11-27 出版日期:2019-06-25 发布日期:2019-05-31
  • 通讯作者: 卢啸(1986-),男,湖南人,副教授,博士,硕导,主要从事高层抗震研究(E-mail:xiaolu@bjtu.edu.cn). E-mail:xiaolu@bjtu.edu.cn
  • 作者简介:吕泉林(1992-),男,山东人,硕士生,主要从事高层抗震研究(E-mail:16121077@bjtu.edu.cn).
  • 基金资助:
    北京市自然科学基金项目(8182044)

STUDY ON THE MECHANICS PRINCIPLE AND HYSTERETIC BEHAVIOR OF SELF-CENTERING VISCOELASTIC DIAGONAL MEMBERS

LU Xiao, LÜ Quan-lin   

  1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
  • Received:2018-05-23 Revised:2018-11-27 Online:2019-06-25 Published:2019-05-31

摘要: 为改善超高层建筑伸臂桁架抗震性能,消除传统斜腹杆屈曲后强度刚度退化明显、耗能不足和残余变形较大等问题,该文设计了一种兼具稳定刚度、耗能和复位功能的自复位粘弹性斜腹杆(SC-VEDM)代替传统型钢腹杆。通过合理的构造措施,将粘弹性材料、预应力筋和型钢组装起来,利用粘弹性材料剪切变形提供耗能能力,预应力筋始终受拉提供复位能力;建立SC-VEDM的理论力学模型,分析不同工作阶段的受力特征,推导其理论恢复力模型;利用通用有限元软件MSC.Marc建立SC-VEDM的精细有限元模型,对其滞回性能进行了模拟预测。结果表明,该文提出的构造措施可行,设计的SC-VEDM具有稳定的刚度、较好的耗能和复位能力。且SC-VEDM的数值模拟结果与理论恢复力模型结果吻合良好,腹杆第一刚度相对偏差为0.4%,受压承载力最大相对偏差约为4.64%,累积滞回耗能最大相对偏差约为10.9%,为后续SC-VEDM的试验和设计方法研究奠定了基础。

关键词: 伸臂桁架, 自复位粘弹性腹杆, 恢复力模型, 粘弹性材料, 滞回特性

Abstract: To improve the seismic performance of outriggers in super-tall buildings and to eliminate the defects of obvious strength and stiffness degradation, low energy dissipation and large residual deformation after the buckling of conventional diagonal members, a self-centering viscoelastic diagonal member (SC-VEDM) with stable initial stiffness, high energy dissipation and self-centering capacity is designed to replace conventional steel diagonal members. This component is assembled by viscoelastic materials, prestressed tendons and shaped steels with proper configuration measures. The energy dissipation capacity is provided by the shear deformation of the viscoelastic material whereas the self-centering capacity is provided by the tension in the prestressed tendons. A theoretical mechanical model of the SC-VEDM is established. The stress characteristics at different work stages as well as a theoretical restoring force model are analyzed. The hysteresis performance of the SC-VEDM is predicted by a fine finite element model with MSC.Marc software. The results show that the proposed configuration measures of SC-VEDM are feasible and that the SC-VEDM has stable initial stiffness, high energy dissipation and self-centering capability. Good agreement of hysteretic curves between the simulation and theoretical results is observed. The relative deviation of the first stiffness is approximately 0.4%, the maximum relative deviation of compressive strength is approximately 4.64%, and the maximum relative deviation of energy dissipation capacity is approximately 10.9%. The model lays the foundation for subsequent experiment and design method research of SC-VEDM.

Key words: outrigger truss, self-centering viscoelastic diagonal member, restoring force model, viscoelastic materials, hysteretic behavior

中图分类号: 

  • TU972
[1] 徐培福, 王翠坤, 肖从真. 中国高层建筑结构发展与展望[J]. 建筑结构, 2009, 39(9):28-32. Xu Peifu, Wang Cuikun, Xiao Congzhen. Development and prospect of high-rise building structures in China[J]. Building Structure, 2009, 39(9):28-32. (in Chinese)
[2] 王翠坤, 田春雨, 肖从真. 高层建筑中钢-混凝土混合结构的研究与应用进展[J]. 建筑结构, 2011, 41(11):28-33. Wang Cuikun, Tian Chunyu, Xiao Congzhen. Development of research and application of concrete-steel hybrid high-rise building structures[J]. Building Structure, 2011, 41(11):28-33. (in Chinese)
[3] 汪大绥, 周建龙. 我国高层建筑钢-混凝土混合结构发展与展望[J]. 建筑结构学报, 2010, 31(6):62-70. Wang Dasui, Zhou Jianlong. Development and prospsct of hybrid high-rise building structures in China[J].Journal of Building Structures, 2010, 31(6):62-70. (in Chinese)
[4] 徐培福, 黄吉锋, 肖从真, 等. 带加强层的框架-核心筒结构抗震设计中的几个问题[J]. 建筑结构学报, 1998, 20(4):2-10. Xu Peifu, Huang Jifeng, Xiao Congzhen, et al. Some problems in aseismic design of frame-core wall structures with strengthened storeys[J]. Journal of Building Structures, 1998, 20(4):2-10. (in Chinese)
[5] 赵宪忠, 王斌, 陈以一, 等. 上海中心大厦伸臂桁架与巨柱和核心筒连接的静力性能试验研究[J]. 建筑结构学报, 2013, 34(2):20-28. Zhao Xianzhong, Wang Bin, Chen Yiyi, et al. Monotonic static tests on outrigger truss and its connection with mega column and core tube of the Shanghai Tower[J]. Journal of Building Structures, 2013, 34(2):20-28. (in Chinese)
[6] 陈以一, 王斌, 赵宪忠, 等. 上海中心大厦伸臂桁架与巨柱和核心筒连接的抗震性能试验研究[J]. 建筑结构学报, 2013, 34(2):29-36. Chen Yiyi, Wang Bin, Zhao Xianzhong, et al. Hysteretic tests on outrigger truss and its connection with mega column and core tube of the Shanghai Tower[J]. Journal of Building Structures, 2013, 34(2):29-36. (in Chinese)
[7] 严鹏, 王伟, 陈以一. 钢管混凝土柱与伸臂桁架连接节点试验研究[J]. 工程力学, 2013, 30(增刊):78-82. Yan Peng, Wang Wei, Chen Yiyi. Experimental study on concrete filled steel tube column to outrigger truss connection[J]. Engineering Mechanics, 2013, 30(Suppl):78-82. (in Chinese)
[8] 聂建国, 丁然, 樊健生. 超高层建筑伸臂桁架-核心筒剪力墙节点受力性能数值与理论研究[J]. 工程力学, 2014, 31(1):46-55. Nie Jianguo, Ding Ran, Fan Jiansheng. Numerical and theoretical research on mechanical performance of outrigger truss-wall joint in super high-rise buildings[J]. Engineering Mechanics, 2014, 31(1):46-55. (in Chinese)
[9] Nie J G, Ding R. Experimental research on seismic performance of K-style steel outrigger truss to concrete core tube wall joints[C]//Structures Congress 2013:Bridging Your Passion with Your Profession. Pittsburgh:Structural Engineering Institute of ASCE, 2013:2802-2813.
[10] Smith R J, Willford M R. The damped outrigger concept for tall buildings[J]. The Structural Design of Tall and Special Buildings, 2007, 16(4):501-517.
[11] 李宏描, 周颖. 黏滞阻尼器伸臂桁架布置对超高层结构减震性能影响研究[J]. 结构工程师, 2015, 31(3):63-68. Li Hongmiao, Zhou Ying. The effect of the configurations of viscous damped outriggers on the seismic performance of a super-tall building[J]. Structural Engineer, 2015, 31(3):63-68. (in Chinese)
[12] 邢丽丽, 周颖. 黏滞阻尼器型伸臂桁架的最优布置形式研究[J]. 地震工程与工程振动, 2016, 36(1):68-76. Xing Lili, Zhou Ying. The study of optimal arrangement form of outrigger trusses with viscous dampers[J]. Seismic Engineering and Engineering Vibration, 2016, 36(1):68-76. (in Chinese)
[13] 丁洁民, 王世玉, 吴宏磊. 黏滞阻尼伸臂桁架在超高层结构中的应用研究[J]. 建筑结构学报, 2016, 37(增刊1):48-54. Ding Jiemin, Wang Shiyu, Wu Honglei. Application research of viscous damping outrigger truss in super high-rise building[J]. Journal of Building Structures, 2016, 37(Suppl 1):48-54. (in Chinese)
[14] 杨青顺, 甄伟, 陆新征, 等. 带端部阻尼器伸臂桁架的抗震性能试验研究[J]. 工程力学, 2018, 35(2):47-58. Yang Qingshun, Zhen Wei, Lu Xinzheng, et al. Experimental study on the seismic performance of damped outriggers[J]. Engineering Mechanics, 2018, 35(2):47-58. (in Chinese)
[15] 杨青顺, 甄伟, 解琳琳, 等. 耗能伸臂桁架抗震性能的试验研究[J]. 工程力学, 2016, 33(10):76-85. Yang Qingshun, Zhen Wei, Xie Linlin, et al. Experimental study on the seismic performance of energy dissipation outriggers[J]. Engineering Mechanics, 2016, 33(10):76-85. (in Chinese)
[16] 任重翠, 徐自国, 肖从真, 等. 防屈曲支撑在超高层建筑结构伸臂桁架中的应用[J]. 建筑结构, 2013, 43(5):54-59. Ren Chongcui, Xu Ziguo, Xiao Congzhen, et al. Application of unbonded brace in super high-rise structure with cantilever truss[J]. Building Structure, 2013, 43(5):54-59. (in Chinese)
[17] Lin P C, Takeuchi T, Matsui R. Seismic performance evaluation of single damped-outrigger system incorporating buckling-restrained braces[J]. Earthquake Engineering & Structural Dynamics, 2018, 47(12):2343-2365.
[18] 张艳霞, 李振兴, 刘安然, 等. 自复位可更换软钢耗能支撑性能研究[J]. 工程力学, 2017, 34(8):180-193. Zhang Yanxia, Li Zhenxing, Liu Anran, et al. Research on the behavior of self-centering replaceable mild steel energy-dissipating braces[J]. Engineering Mechanics, 2017, 34(8):180-193. (in Chinese)
[19] Kiggins S, Uang C M. Reducing residual drift of buckling-restrained braced frames as a dual system[J]. Engineering Structures, 2006, 28(11):1525-1532.
[20] 周云. 粘弹性阻尼减震结构设计理论及应用[M]. 武汉:武汉理工大学出版社, 2013:31-34. Zhou Yun. Design theory and application of viscoelastic damping structure[M]. Wuhan:Wuhan University of Technology Press, 2013:31-34.
[21] Drozdov A D. Mechanics of viscoelastic solids[M]. New York:John Wiley Sons, 1998:56-63.
[22] Zhao G F, Ma Y H, Li Y M, et al. Development of a modified Mooney-Rivlin constitutive model for rubber to investigate the effects of aging and marine corrosion on seismic isolated bearings[J]. Earthquake Engineering and Engineering Vibration, 2017, 16(4):815-826.
[23] Yeoh O H. Some forms of the strain energy function for rubber[J]. Rubber Chemistry and Technology, 1993, 66(5):754-771.
[24] Tschoegl N W. The phenomenological theory of linear viscoelastic behavior[M]. Berlin:Springer, 1989:396-442.
[25] Park S W. Analytical modeling of viscoelastic dampers for structural and vibration control[J]. International Journal of Solids and Structures, 2001, 38(44):8065-8092.
[26] Montgomery M, Christopoulos C. Experimental validation of viscoelastic coupling dampers for enhanced dynamic performance of high-Rise buildings[J]. Journal of Structural Engineering, 2015, 141(5):04014145.
[27] Xu Z D, Liao Y X, Ge T, et al. Experimental and theoretical study of viscoelastic dampers with different matrix rubbers[J]. Journal of Engineering Mechanics, 2016, 142(8):04016051.
[28] GB 50017-2003, 钢结构设计规范[S]. 北京:中华人民共和国建设部, 2003. GB 50017-2003, Code for design of steel structures[S]. Beijing:Ministry of Construction of the People's Republic of China, 2003. (in Chinese)
[29] 赵刚, 潘鹏, 钱稼茹, 等. 黏弹性阻尼器大变形性能试验研究[J]. 建筑结构学报, 2012, 33(10):126-133. Zhao Gang, Pan Peng, Qian Jiaru, et al. Experimental study of viscoelastic dampers subjected to large deformation[J]. Journal of Building Structures, 2012, 33(10):126-133. (in Chinese)
[1] 隋䶮, 薛建阳, 董金爽, 张锡成, 谢启芳, 白福玉. 附设粘滞阻尼器的混凝土仿古建筑梁-柱节点恢复力模型试验研究[J]. 工程力学, 2019, 36(S1): 44-53.
[2] 徐龙河, 孙雨生, 要世乾, 李忠献. 装配式自复位耗能支撑恢复力模型与试验验证[J]. 工程力学, 2019, 36(6): 119-127,146.
[3] 黄宙, 李宏男, 付兴. 自复位放大位移型SMA阻尼器优化设计方法研究[J]. 工程力学, 2019, 36(6): 202-210.
[4] 曹琛, 郑山锁, 胡卫兵, 赵彦堂, 郑捷, 周炎. 近海大气环境下锈蚀RC框架梁恢复力模型研究[J]. 工程力学, 2019, 36(4): 125-134.
[5] 朱亚宁, 林楷奇, 蒋庆, 林元庆, 杨青顺, 陆新征. 牺牲-耗能型伸臂桁架的设计和试验研究[J]. 工程力学, 2019, 36(2): 104-113.
[6] 陈云, 陈超, 蒋欢军, 万志威, 刘涛. O型钢板-高阻尼黏弹性复合型消能器的力学性能试验与分析[J]. 工程力学, 2019, 36(1): 119-128.
[7] 徐龙河, 王坤鹏, 谢行思, 李忠献. 具有复位功能的阻尼耗能支撑滞回模型与抗震性能研究[J]. 工程力学, 2018, 35(7): 39-46.
[8] 崔瑶, 李浩, 刘浩, 王晶秋, 唐贞云. 外露式钢柱脚恢复力特性分析[J]. 工程力学, 2018, 35(7): 232-242.
[9] 韩强, 贾振雷, 王晓强, 黄超. 内嵌碟簧型自复位防屈曲支撑性能试验及其恢复力模型研究[J]. 工程力学, 2018, 35(6): 144-150,190.
[10] 杨青顺, 甄伟, 陆新征, 解琳琳, 林楷奇. 带端部阻尼器伸臂桁架的抗震性能试验研究[J]. 工程力学, 2018, 35(2): 47-58.
[11] 郑山锁, 张晓辉, 赵旭冉, 刘毅. 近海大气环境下锈蚀钢框架梁抗震性能试验及恢复力模型研究[J]. 工程力学, 2018, 35(12): 98-106,115.
[12] 蔡小宁, 孟少平. 预应力自复位混凝土框架节点恢复力模型研究[J]. 工程力学, 2018, 35(1): 182-190,200.
[13] 徐龙河, 谢行思, 李忠献. 自复位变阻尼耗能支撑的力学原理与性能研究[J]. 工程力学, 2018, 35(1): 201-208.
[14] 王庆利, 牛献军, 冯立明. 圆CFRP-钢管混凝土压弯构件滞回性能的参数分析与恢复力模型[J]. 工程力学, 2017, 34(增刊): 159-166.
[15] 史庆轩, 王峰, 赵锐锐, 王朋. 斜交网格X型节点轴向往复荷载作用下的性能研究[J]. 工程力学, 2017, 34(8): 60-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张冬娟;崔振山;李玉强;阮雪榆. 平面应变板料拉弯成形回弹理论分析[J]. 工程力学, 2007, 24(7): 0 -071 .
[2] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[3] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[4] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[5] 于琦;孟少平;吴京;郑开启. 预应力混凝土结构组合式非线性分析模型[J]. 工程力学, 2011, 28(11): 130 -137 .
[6] 赵同峰;欧阳伟;郝晓彬. 方钢管钢骨高强混凝土压弯剪承载力分析[J]. 工程力学, 2011, 28(11): 153 -158, .
[7] 张慕宇;杨智春;王乐;丁燕. 复合材料梁结构损伤定位的无参考点互相关分析方法[J]. 工程力学, 2011, 28(11): 166 -169 .
[8] 郭佳民;董石麟;袁行飞. 随机缺陷模态法在弦支穹顶稳定性计算中的应用[J]. 工程力学, 2011, 28(11): 178 -183 .
[9] 祝效华;王宇;童华;刘应华. 基于弹塑性力学的油气井打捞公锥造扣全过程分析和评价[J]. 工程力学, 2011, 28(11): 184 -189 .
[10] 黄友钦;顾明. 风雪耦合作用下单层柱面网壳的动力稳定[J]. 工程力学, 2011, 28(11): 210 -217, .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日