工程力学 ›› 2019, Vol. 36 ›› Issue (9): 68-78.doi: 10.6052/j.issn.1000-4750.2018.05.0263

• 土木工程学科 • 上一篇    下一篇

局部采用高延性混凝土装配式框架梁-柱节点抗震性能试验研究

邓明科1, 马福栋1, 叶旺1, 殷鹏飞1,2   

  1. 1. 西安建筑科技大学土木工程学院, 西安 710055;
    2. 国家电网宁夏电力有限公司经济技术研究院, 银川 750004
  • 收稿日期:2018-05-16 修回日期:2019-04-15 出版日期:2019-09-25 发布日期:2019-04-29
  • 通讯作者: 邓明科(1979-),男,四川南充人,教授,工学博士,从事高性能土木工程材料与新型结构研究(E-mail:dengmingke@126.com). E-mail:dengmingke@126.com
  • 作者简介:马福栋(1991-),男,山东平阴人,博士生,从事高性能土木工程材料与新型结构研究(E-mail:mafudongmfd@126.com);叶旺(1994-),男,陕西澄城人,硕士生,从事高性能土木工程材料与新型结构研究(E-mail:yewang1014@126.com);殷鹏飞(1991-),男,江苏泰州人,助力工程师,硕士,土建评审专责,从事建筑结构及抗震研究(E-mail:yinpf_1991@163.com).
  • 基金资助:
    国家自然科学基金项目(51578445)

EXPERIMENTAL STUDY ON ASEISMIC BEHAVIOR OF LOCALLY USED HDC ASSEMBLED FRAME BEAM-COLUMN JOINTS

DENG Ming-ke1, MA Fu-dong1, YE Wang1, YIN Peng-fei1,2   

  1. 1. School of Civil Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China;
    2. Economic and Technological Research Institute, National Electric Power Grid Ningxia Electric Power Co., Ltd, Yinchuan 750004, China
  • Received:2018-05-16 Revised:2019-04-15 Online:2019-09-25 Published:2019-04-29

摘要: 为了提高装配式梁柱节点的变形及耗能能力,同时简化节点核心区构造避免节点核心区钢筋拥挤而导致的施工困难,在节点局部采用高延性混凝土(HDC)代替普通混凝土。考虑轴压比和节点核心区配箍率的影响,进行了5个局部采用HDC的装配式梁柱节点和1个钢筋混凝土(RC)装配式梁柱节点的拟静力试验,分析了其破坏形态、滞回特性、变形能力、刚度退化、耗能能力和节点核心区剪切变形。结果表明:节点核心区采用HDC,破坏由节点核心区转移到梁端,实现了强节点设计原则,有效提高了框架节点的变形能力和耗能能力;节点核心区和梁端均采用HDC,梁柱节点的破坏转移到柱端,需对柱端适当加强;节点核心区采用HDC的装配式梁柱节点,可以减少甚至免去箍筋的用量。

关键词: 装配式梁柱节点, 高延性混凝土(HDC), 抗震性能, 滞回曲线, 变形能力

Abstract: In order to improve the deformation and energy dissipation capacity of fabricated beam-column joints and avoid the construction difficulties caused by crowded steel bars, high ductile fiber reinforced concrete (HDC) is used as the core material of beam-column joints. Considering the influence of axial compression ratio and stirrup ratio, 5 fabricated beam-column joints partly adopted HDC and 1 reinforced concrete (RC) beam-column joint were tested. The failure patterns, hysteretic characteristics, deformation capacity, stiffness degradation, energy dissipation capacity and shear deformation of the joint core area were analyzed. The results are as follow. First, failure position changed from node core area to beam end after adopted HDC in node core area. The design principle of a strong node is realized, and the deformation ability and energy dissipation capacity of frame nodes are effectively improved. Second, column ends should be strengthened because the failure position transferred to the end of column adopted HDC in the node area and beam end. Third, the amount of stirrups can be reduced when HDC is used in node core area.

Key words: assembled beam-column joint, high ductile fiber reinforced concrete (HDC), aseismic performance, hysteretic curve, deformation capacity

中图分类号: 

  • TU375.4
[1] JGJ 1-2014, 中国建筑标准设计研究院. 装配式混凝土结构技术规程[S]. 北京:中国建筑工业出版社, 2014. JGJ 1-2014, China Institute of Architectural Standards and Design. Technical Specification for Assembled Concrete Structure[M]. Beiing:China Construction Industry Press, 2014. (in Chinese)
[2] Li V C, Wang S, Wu C. Tensile strain-hardening behavior of PVA-ECC[J]. ACI Mater J, 2001, 98(6):483-492.
[3] Li V C. On engineered cementitious composites (ECC):A review of the material and its applications[J]. Advance Concrete Technology, 2003, 1(3):215-230.
[4] Li V C. Engineered cementitious composites tailored composites through micromechanical modeling[C]//Banthia N, Bentur A, Mufti A.Fiber Reinforced Concrete:Present and the Future. Montreal:Canadian Society for Civil Engineering, 1998:64-97.
[5] Li V C, Leung C K Y. Steady state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, ASCE, 1992, 188(11):2246-2264.
[6] 寇佳亮, 邓明科, 梁兴文. 延性纤维增强混凝土单轴拉伸性能试验研究[J]. 建筑结构, 2013, 43(1):59-64. Kou Jialiang, Deng Mingke, Liang Xingwen. Experimental study of uniaxial tensile properties of ductile fiber reinforced concrete[J]. Building Structure, 2013, 43(1):59-64. (in Chinese)
[7] Deng M, Han J, Liu H, et al. Analysis of compressive toughness and deformability of high ductile fiber reinforced concrete[J]. Advances in Materials Science & Engineering, 2015(3):1-7.
[8] 邓明科, 代洁, 梁兴文, 等. 高延性混凝土无腹筋梁受剪性能试验研究[J]. 工程力学, 2016, 33(10):208-217. Deng M K, Dai J, Liang X W, et al. Experimental study on the shear behavior of high ductile fiber reinforced concrete beams without stirrups[J]. Engineering Mechanics, 2016, 33(10):208-217. (in Chinese)
[9] 邓明科, 卢化松, 杨开屏, 等. 型钢高延性混凝土短梁抗剪性能试验研究[J]. 建筑结构学报, 2015, 36(10):73-80. Deng Mingke, Lu Huasong, Yang Kaiping, et al. Experimental study on shear behavior of steel reinforced high ductile concrete short beams[J]. Journal of Building Structures, 2015, 36(10):73-80. (in Chinese)
[10] 邓明科, 卜新星, 潘姣姣, 等. 型钢高延性混凝土短柱抗震性能试验研究[J]. 工程力学, 2017, 34(1):163-170. Deng Mingke, Bu Xinxing, Pan Jiaojiao, et al. Experimental study on seismic behavior of steel reinforced high ductile concrete short columns[J]. Engineering Mechanics, 2017, 34(1):163-170. (in Chinese)
[11] 党争, 梁兴文, 邓明科, 等. 纤维增强混凝土剪力墙抗震性能试验研究与理论分析[J]. 建筑结构学报, 2014, 35(6):12-22. Dang Zheng, Liang Xingwen, Deng Mingke, et al. Experimental and theoretical studies on seismic behavior of fiber reinforced concrete shear walls[J]. Journal of Building Structures, 2014, 35(6):12-22. (in Chinese)
[12] 孙宏哲, 邓明科, 孙飞, 等. 半刚接钢框架内填高延性纤维混凝土剪力墙结构抗震性能试验研究[J]. 土木工程学报, 2015, 31(3):42-51. Sun Hongzhe, Deng Mingke, Sun Fei, et al. Experimental study on seismic behavior of semi-rigid steel frames with ductile fiber reinforced concrete infill walls[J]. China Civil Engineering Journal, 2015, 31(3):42-51. (in Chinese)
[13] Parra-Montesinos G J, Peterfreund S W, Chao S H. Highlydamage-tolerant beam-column joints through use ofhigh-performance fiber-reinforced cement composites[J]. ACI Structural Journal, 2005, 102(3):487-495.
[14] 苏骏, 徐世烺, 毕辉. UHTCC新型梁柱节点抗震性能试验研究[J]. 地震工程与工程振动, 2010, 30(2):59-63. Su Jun, Xu Shilang, Bi Hui. Experimental research on aseismic behavior of new beam-column joints by using cementitious composites with ultrahigh toughness[J]. Journal of Earthquake Engineering and Engineering, Vibration, 2010, 30(2):59-63. (in Chinese)
[15] 梁兴文, 王英俊, 邢朋涛, 等. 局部采用纤维增强混凝土梁柱节点抗震性能试验研究[J]. 工程力学, 2016, 33(4):67-76. Liang X W, Wang Y J, Xing P T, et al. Experimental study on seismic performance of beam-column joints with fiber-reinforced concrete in joint core and plastic hinge zone of beam and column end[J]. Engineering Mechanics, 2016, 33(4):67-76. (in Chinese)
[16] Yang J, Liang S T, Zhu X J, et al. Seismic behavior of precast concrete coupled shear walls with engineered cementitious composite (ECC) in the critical cast-in-place regions[J]. Science China Technological Sciences, 2017, 60(8):1244-1254.
[17] 王英俊, 梁兴文. 纤维增强混凝土梁柱节点受剪承载力计算[J]. 工程力学, 2015, 32(12):161-167. Wang Yingjun, Liang Xingwen. Calculation of the shear capacity of fiber-reinforced concrete beam-column joint[J]. Engineering Mechanics, 2015, 32(12):161-167. (in Chinese)
[18] 聂成才, 刘克, 张守钊. 钢筋套筒灌浆连接应用技术规程[M]. 北京:中国建筑工业出版社, 2015:4-5. Nie Chengcai, Liu Ke, Zhang Shouzhao. Technical specification for application of reinforcement sleeve grouting connection[M]. Beijing:China Construction Industry Press, 2015:4-5. (in Chinese)
[19] 傅剑平, 张川, 陈滔, 等. 钢筋混凝土抗震框架节点受力机理及轴压比影响的试验研究[J]. 建筑结构学报, 2006, 27(3):67-77. Fu J, Zhang C, Chen T, et al. Experimental investigation of shear mechanism and effect of axial-compression ratio on joints in earthquake-resistant reinforced concrete frames[J]. Journal of Building Structures, 2006, 27(3):67-77. (in Chinese)
[20] 唐九如. 钢筋混凝土框架节点抗震[M]. 南京:东南大学出版社, 1989:45-46. Tang Jiuru. Seismic resistance of reinforced concrete frame joints[M]. Nanjing:Southeast University Press, 1989:45-46. (in Chinese)
[1] 李达, 牟在根. 内嵌VV-SPSW平面钢框架结构抗震性能研究[J]. 工程力学, 2019, 36(S1): 210-216.
[2] 杨志坚, 韩嘉明, 雷岳强, 赵海龙, 胡嘉飞. 预应力混凝土管桩与承台连接节点抗震性能研究[J]. 工程力学, 2019, 36(S1): 248-254.
[3] 王元清, 乔学良, 贾连光, 张天雄, 蒋庆林. 单调加载下不锈钢结构梁柱栓焊混用节点承载性能分析[J]. 工程力学, 2019, 36(S1): 59-65.
[4] 张浩, 连鸣, 苏明周, 程倩倩, 关彬林. 含可更换剪切型耗能梁段-高强钢组合框筒结构静力弹塑性数值分析[J]. 工程力学, 2019, 36(S1): 78-85.
[5] 焦驰宇, 马银强, 刘陆宇, 龙佩恒, 侯苏伟. FPS支座双向加载拟静力试验与数值模拟研究[J]. 工程力学, 2019, 36(S1): 86-91.
[6] 赵宪忠, 戴柳丝, 黄兆祺, 任重. 钢货架结构研究现状与关键技术[J]. 工程力学, 2019, 36(8): 1-15.
[7] 袁辉辉, 吴庆雄, 陈宝春, 蔡慧雄. 平缀管式钢管混凝土格构柱拟动力试验研究[J]. 工程力学, 2019, 36(7): 67-78.
[8] 侯立群, 闫维明, 陈适才, 陆新征. 内置角钢改进夹心节点抗震性能研究与抗剪承载力计算[J]. 工程力学, 2019, 36(7): 79-88.
[9] 邓明科, 董志芳, 杨铄, 王露, 周铁钢. 高延性混凝土加固震损砌体结构振动台试验研究[J]. 工程力学, 2019, 36(7): 116-125.
[10] 王宇航, 刘元九, 周绪红. 腹板屈曲约束钢连梁抗震性能研究[J]. 工程力学, 2019, 36(6): 49-59,69.
[11] 杨参天, 解琳琳, 李爱群, 陈越. 足尺空腔式RC框架柱抗震性能试验研究[J]. 工程力学, 2019, 36(6): 60-69.
[12] 牟犇, 王君昌, 崔瑶, 庞力艺, 松尾真太朗. 一种改进型方钢管柱与钢梁连接节点抗震性能研究[J]. 工程力学, 2019, 36(6): 164-174.
[13] 邓明科, 李彤, 樊鑫淼. 高延性混凝土加固砖柱轴压性能试验研究[J]. 工程力学, 2019, 36(5): 92-99.
[14] 曾磊, 谢炜, 郑山锁, 陈熠光, 任雯婷. T形配钢型钢混凝土柱-钢梁框架抗震性能研究[J]. 工程力学, 2019, 36(5): 157-165.
[15] 种迅, 张蓝方, 万金亮, 王德才, 叶献国, 解琳琳, 邵徽斌. 两层带开洞预制剪力墙抗震性能试验研究与数值模拟分析[J]. 工程力学, 2019, 36(5): 176-183.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张冬娟;崔振山;李玉强;阮雪榆. 平面应变板料拉弯成形回弹理论分析[J]. 工程力学, 2007, 24(7): 0 -071 .
[2] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[3] 陈有亮;邵伟;周有成. 水饱和混凝土单轴压缩弹塑性损伤本构模型[J]. 工程力学, 2011, 28(11): 59 -063, .
[4] 吴方伯;黄海林;陈伟;周绪红;. 肋上开孔对预制预应力混凝土带肋薄板施工阶段挠度计算方法的影响研究[J]. 工程力学, 2011, 28(11): 64 -071 .
[5] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[6] 王坤;谢康和;李传勋;童磊. 特殊条件下考虑起始比降的双层地基一维固结解析解[J]. 工程力学, 2011, 28(11): 78 -082 .
[7] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[8] 吴明;彭建兵;徐平;孙苗苗;夏唐代. 考虑土拱效应的挡墙后土压力研究[J]. 工程力学, 2011, 28(11): 89 -095 .
[9] 陆本燕;刘伯权;邢国华;吴涛. 桥梁结构基于性能的抗震设防目标与性能指标研究[J]. 工程力学, 2011, 28(11): 96 -103, .
[10] 左志亮;蔡健;钟国坤;杨春;. 带约束拉杆T形截面钢管内核心混凝土的等效单轴本构关系[J]. 工程力学, 2011, 28(11): 104 -113 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日