工程力学 ›› 2019, Vol. 36 ›› Issue (5): 208-215.doi: 10.6052/j.issn.1000-4750.2018.05.0261

• 土木工程学科 • 上一篇    下一篇

地震作用的相关性对结构瞬态响应的影响

郭秀秀, 徐兴华, 黄举, 史庆轩   

  1. 西安建筑科技大学土木工程学院, 西安 710055
  • 收稿日期:2018-05-18 修回日期:2018-12-07 出版日期:2019-05-25 发布日期:2019-04-10
  • 通讯作者: 史庆轩(1963-),男,山东人,教授,博士,博导,主要从事高层结构抗震方面的研究(E-mail:shi_qx@xauat.edu.cn). E-mail:shi_qx@xauat.edu.cn
  • 作者简介:郭秀秀(1985-),女,山西人,副教授,博士,主要从事随机振动方面的研究(E-mail:siusiuguo@hotmail.com);徐兴华(1994-),男,浙江人,硕士生,主要从事结构随机振动方面的研究(E-mail:xxh19940619@163.com);黄举(1992-),男,陕西人,硕士生,主要从事结构随机振动方面的研究(E-mail:huangju1992@126.com).
  • 基金资助:
    国家自然科学基金项目(11502187,51478382);陕西省教育厅专项科研项目(16JK1440);陕西省自然科学基础研究基金青年人才项目(Z20180115);西安建筑科技大学人才基金项目(RC1609)

THE TIME INFLUENCE OF CORRELATED SEISMIC ACTION ON STRUCTURAL RESPONSE

GUO Siu-siu, XU Xing-hua, HUANG Ju, SHI Qing-xuan   

  1. School of Civil Engineering, Xi'an University of Architecture and Technology, Shaanxi 710055, China
  • Received:2018-05-18 Revised:2018-12-07 Online:2019-05-25 Published:2019-04-10

摘要: 地震作用一般分解为水平运动分量和竖向运动分量,在这两个运动分量的作用下,结构发生大变形时,可能会经历由地震运动分量演变的外部激励和参数激励过程。由于运动分量间的相关性,推导出实际上这两个激励过程也是相关的,而且是完全相关的,但在过去的研究中,为了简化分析,常常假设这两个激励过程是完全独立的。该文以高斯白噪声和过滤高斯白噪声过程模拟地震动过程,以某一单层框架结构为研究对象,采用累积矩截断法,分析高斯白噪声和过滤高斯白噪声这两种地震动激励下单层框架结构的非平稳地震响应。同时考虑地震动分量间的相关性,得到更为精细化的结构随机地震响应,并分析这种相关性对结构响应的影响。结果表明:将地震动作用模拟为更接近实际的过滤高斯白噪声过程时,地震作用相关性对结构响应的影响更为明显,更为不可忽略。

关键词: 过滤高斯白噪声, 地震作用相关性, 累积矩截断法, 结构地震响应, 场地条件

Abstract: Seismic action is generally decomposed into horizontal motion components and vertical motion components. Under the action of these two motion components, external excitation and parametric excitation processes may be experienced when the structure undergoes large deformation. Although these two incentive processes are completely related, it is often assumed that the two incentive processes are completely independent in the past research in order to simplify the analysis. A single-layer frame structure is studied. The correlation between external excitation and parameter excitation is considered, and a more accurate structural random seismic response is obtained. The influence of this correlation on the structural response is analyzed. Starting from the vibration equation of the structure, the cumulative moment truncation method is used to solve the non-stationary seismic response of a single-layer frame structure under the excitation of Gaussian white noise and filtered white noise. The results show that when the simulated ground motion is closer to the actual Gaussian white noise process, the influence of seismic correlation on the structural response is more obvious.

Key words: filtered white noise, correlation of earthquake action, cumulant-neglect method, structural response, site conditions

中图分类号: 

  • TU311.3
[1] Lanzotti A, Renno F, Russo M, et al. Design and development of an automotive magnetorheological semi-active differential[J]. Mechatronics, 2014, 24(5):426-435.
[2] Kanai K. Semi-empirical formula for the seismic characteristics of the ground[J]. Earthquake Research Institute, the University of Tokyo, 1957, 35(2):309-325.
[3] Ruiz P, Penzien J. Probabilistic study of the behavior of structures during earthquakes[R]. Earthquake Engineering Research Center, UCB, CA, Report No. EERC 69-03, 1969.
[4] 欧进萍, 牛荻涛, 杜修力. 设计用随机地震动的模型及其参数确定[J]. 地震工程与工程振动, 1991, 11(3):45-54. Ou Jinping, Niu Ditao, Du Xiuli. Random earthquake ground motion model and its parameter determination used in asismic design[J]. Earthquake Engineering and Engineering Vibration, 1991, 11(3):45-54. (in Chinese)
[5] 杜修力, 陈厚群. 地震动随机模型及其参数确定方法[J]. 地震工程与工程振动, 1994, 14(4):1-5. Du Xiuli, Chen Houxiong. Random simulation and its parameter determination method of earthquake ground motion[J]. Earthquake Engineering and Engineering Vibration,1994, 14(4):1-5. (in Chinese)
[6] 赖明, 叶天义, 李英民. 地震动的双重过滤白噪声模型[J]. 土木工程学报, 1995, 28(6):60-66. Lai Ming, Ye Tianyi, Li Yingmin. Multi-filtered white noise model for ground motion[J]. Chinese Journal of Civil Engineering, 1995, 28(6):60-66. (in Chinese)
[7] Deng Weihua. Numerical algorithm for the time fractional Fokker-Planck equation[J]. Journal of Computational Physics, 2007, 227(2):1510-1522.
[8] 戚鲁媛, 徐伟, 高维廷. 色噪声激励Rayleigh-Duffing振子瞬态响应及最优有界控制[J]. 工程力学, 2013, 30(12):24-30. Qi Luyuan, Xu Wei, Gao Weiting. Transient response and optimal bounded control of colored noise excited Rayleigh-Duffing oscillator[J]. Engineering Mechanics, 2013, 30(12):24-30. (in Chinese)
[9] 杨杰, 马萌璠, 王旭. 随机结构动力可靠度计算的条件概率方法[J]. 工程力学, 2018, A01(增刊1):17-21. Yang Jie, Ma Mengfan, Wang Xu. Conditional probability method for dynamic reliability calculation of random structures[J]. Engineering Mechanics, 2018, A01(Suppl 1):17-21. (in Chinese)
[10] Xie W C. Moment Lyapunov exponents of a two-dimensional system under combined harmonic and real noise excitations[J]. Journal of Sound & Vibration, 2007, 303(1):109-134.
[11] Xie W C. Moment Lyapunov exponents of a two-dimensional system under bounded noise parametric excitation[J]. Journal of Sound & Vibration, 2002, 239(1):139-155.
[12] Loh C H, Ma M J. Reliability assessment of structure subjected to horizontal-vertical random earthquake excitations[J]. Structural Safety, 1997, 19(1):153-168.
[13] Bobryk R V, Chrzeszczyk A. Stability regions for Mathieu equation with imperfect periodicity[J]. Physics Letters A, 2009, 373(39):3532-3535.
[14] Paola M D, Floris C. Iterative closure method for non-linear systems driven by polynomials of Gaussian filtered processes[J]. Computers & Structures, 2008, 86(11/12):1285-1296.
[15] Su Z, Falzarano J M. Gaussian and non-Gaussian cumulant neglect application to large amplitude rolling in random waves[J]. International Shipbuilding Progress, 2011, 58(2):97-113.
[16] Floris C. Mean square stability of a second-order parametric linear system excited by a colored Gaussian noise[J]. Journal of Sound & Vibration, 2015, 336(1):82-95.
[17] 刘章军, 王磊, 黄帅. 非平稳随机地震作用的结构整体可靠度分析[J]. 工程力学, 2015(12):225-232. Liu Zhangjun, Wang Lei, Huang Shuai. Structural reliability analysis of non-stationary random earthquakes[J]. Engineering Mechanics, 2015(12):225-232. (in Chinese)
[18] Lin Y K, Shih T Y. Column response to horizontal-vertical earthquakes[J]. Journal of the Engineering Mechanics Division, 1980, 106(6):1099-1109.
[19] 李创第, 李暾. 结构在水平与竖向随机地震同时作用下的相关函数和谱密度[J]. 工程力学, 2008, 25(8):156-163. Li Chuangdi, Li Tun. Correlation function and spectral density of structures under horizontal and vertical random earthquakes[J]. Engineering Mechanics, 2008, 25(8):156-163. (in Chinese)
[20] Dimentberg M, Bucher C. Combinational parametric resonance under imperfectly periodic excitation[J]. Journal of Sound & Vibration, 2012, 331(19):4373-4378.
[21] Guo S S. Probabilistic solutions of stochastic oscillators excited by correlated external and parametric white noises[J]. Journal of Vibration & Acoustics, 2014, 136(3):031003.
[22] Guo S S, Er G K, Chi C L. Probabilistic solutions of nonlinear oscillators excited by correlated external and velocity-parametric Gaussian white noises[J]. Nonlinear Dynamics, 2014, 77(3):597-604.
[23] 李创第, 邹万杰, 黄天立, 等. 结构在水平与竖向地震同时作用的非平稳响应[J]. 土木工程学报, 2005, 38(6):25-34. Li Chuangdi, Zou Wanjie, Huang Tianli. The nonstationary response of structure to horizontal and vertical earthquakes[J]. China Civil Engineering Journal, 2005, 38(6):25-34. (in Chinese)
[24] Joseph Emans, Marian Wiercigroch. Cumulative effect of structural nonlinearities:chaotic dynamics of cantilever beam system with impacts[J]. Chaos, Solitons and Fractals, 2005(23):1661-1670.
[1] 曾翔, 刘诗璇, 许镇, 陆新征. 基于FEMA-P58方法的校园建筑地震经济损失预测案例分析[J]. 工程力学, 2016, 33(增刊): 113-118.
[2] 卢书楠, 翟长海, 谢礼立. 汶川地震中SDOF体系地震输入能量需求的研究[J]. 工程力学, 2013, 30(8): 42-48.
[3] 闫维明,李晰,陈彦江,李勇,顾大鹏. 钢管混凝土拱桥台阵试验研究:场地条件的影响[J]. 工程力学, 2013, 30(6): 116-123.
[4] 樊 剑;吕 超;张 辉. 地震波时频特征及与结构地震响应的关系[J]. 工程力学, 2010, 27(6): 98-105,.
[5] 翟长海;谢礼立. 多自由度体系效应对强度折减系数的影响[J]. 工程力学, 2006, 23(11): 33-37,6.
[6] 杜永峰;李慧;苏磐石;赵国藩. 非比例阻尼隔震结构地震响应的实振型分解法[J]. 工程力学, 2003, 20(4): 24-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙振忠;杨玉英. 薄板剪应力起皱研究[J]. 工程力学, 2006, 23(7): 35 -39 .
[2] 徐洋;姜洪洲;丛大成;韩俊伟. 基于LQG/LTR方法的结构主动控制的研究[J]. 工程力学, 2006, 23(7): 130 -135 .
[3] 李志军;Devinder S Sodhi;卢鹏. 渤海海冰工程设计参数分布[J]. 工程力学, 2006, 23(6): 167 -172 .
[4] 黄斌;史文海. 基于统计模型的结构损伤识别[J]. 工程力学, 2006, 23(12): 47 -52,1 .
[5] 赵宝虎;王燕群;岳 澄;亢一澜;王 辉. 盾构始发过程反力架应力监测与安全评价[J]. 工程力学, 2009, 26(9): 105 -111 .
[6] 张 辉;范宝春;陈志华;董 刚. 基于伴随流场的流动优化控制[J]. 工程力学, 2009, 26(9): 231 -236 .
[7] 熊仲明;韦 俊;曹 欣;王军良. 46.5m大跨度弧形钢拱结构的稳定及其缺陷影响分析[J]. 工程力学, 2009, 26(11): 172 -178 .
[8] 潘秀珍;郝际平;王德法;朱轶韵;高 杰. 单斜杆耗能器偏心支撑结构的抗震性能研究[J]. 工程力学, 2010, 27(6): 57 -064 .
[9] 金阿芳;买买提明&#;艾尼;杨智春. 沙埋现象的无网格粒子法模拟[J]. 工程力学, 2010, 27(6): 209 -214 .
[10] 张 惠;丁旺才;李 飞. 两自由度含间隙和预紧弹簧碰撞振动系统动力学分析[J]. 工程力学, 2011, 28(3): 209 -217 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日