工程力学 ›› 2019, Vol. 36 ›› Issue (7): 146-155.doi: 10.6052/j.issn.1000-4750.2018.05.0255

• 土木工程学科 • 上一篇    下一篇

预制UHPC模板及采用预制模板的RC板受力性能及承载力分析

梁兴文1, 王莹1, 于婧1, 李林2   

  1. 1. 西安建筑科技大学土木工程学院, 陕西, 西安 710055;
    2. 陕西建研结构工程股份有限公司, 陕西, 西安 710082
  • 收稿日期:2018-05-17 修回日期:2018-11-12 出版日期:2019-07-06 发布日期:2019-07-06
  • 通讯作者: 梁兴文(1952-),男,陕西人,教授,硕士,博导,从事土木工程新材料及其应用研究(E-mail:liangxingwen2000@163.com) E-mail:liangxingwen2000@163.com
  • 作者简介:王莹(1992-),女,陕西人,硕士生,从事土木工程新材料结构研究(E-mail:1075610441@qq.com);于婧(1982-),女,河南人,副教授,博士,从事土木工程新材料及其应用研究(E-mail:yujing1506@163.com);李林(1970-),男,陕西人,教授级高工,硕士,从事建筑结构设计与加固研究(E-mail:lilin6832@163.com).
  • 基金资助:
    国家自然科学基金项目(51278402)

Mechanical properties and strength of prefabricated UHPC formwork and RC slab with prefabricated UHPC formwork

LIANG Xing-wen1, WANG Ying1, YU Jing1, LI Lin2   

  1. 1. School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China;
    2. Shaanxi Jianyan Structural Engineering Co. Ltd., Xi'an, Shaanxi 710082, China
  • Received:2018-05-17 Revised:2018-11-12 Online:2019-07-06 Published:2019-07-06

摘要: 采用超高性能混凝土(UHPC)制作厚度为10 mm的模板,对UHPC模板进行施工阶段加载试验,评估其作为现浇楼板的模板的可行性;以UHPC模板作为底模,分别制作了6个简支单向板和1个两跨连续单向板,对其进行静力加载试验。结果表明,厚度为10 mm的UHPC板作为建筑模板时,模板下的支撑间距可取0.5 m,模板处于弹性状态下可施加的均布荷载为6 kN/m2,约为施工均布活荷载设计值的1.7倍。以UHPC作为模板的钢筋混凝土(RC)单向板,在板破坏时,UHPC模板与后浇混凝土界面未出现肉眼可见的粘结滑移现象;其受弯承载力约为相同截面尺寸及配筋的RC板的2倍。考虑UHPC模板及受拉区混凝土的受拉作用,建立了这种RC单向板的受弯承载力计算模型,模型的计算值与试验值符合较好。

关键词: 超高性能混凝土, 预制模板, 受力性能, 粘结滑移, 受弯承载力

Abstract: Ultra High Performance Concrete (UHPC) was used to construct prefabricated formwork of 10 mm thick. The construction phase loading test was carried out to evaluate the feasibility of the UHPC formwork as a formwork for cast-in-place concrete slab. Six simply supported unidirectional slabs and a two-span continuous unidirectional slab were manufactured and tested, for which the prefabricated UHPC formwork was used as the bottom formwork. The results show that when the UHPC formwork of 10 mm thick is used as the building formwork, the supporting distance under the formwork can be 0.5 m, and uniformly distributed load of up to 6 kN/m2 can be applied on the UHPC formwork in the elastic state, which is approximately 1.7 times the design value of the construction uniformly distributed load. The interface between the UHPC formwork and post-cast-inplace concrete does not exhibit a visible bond-slip phenomenon when the composite slab is destroyed. The flexural strength of the slab is approximately two times that of a RC slab with the same cross-section and reinforcement. A formula for calculating the cross-sectional flexural strength of unidirectional slabs is established,which considers the tensile force in the prefabricated UHPC formwork and concrete in the tensile region. The strengths predicted by the formula show good agreement with the experimental results.

Key words: ultra high performance concrete, prefabricated formwork, mechanical properties, bond-slip, flexural strength

中图分类号: 

  • TU755.2
[1] Muhammad Safdar, Takashi Matsumoto, Ko Kakuma. Flexural behavior of reinforced concrete beams repaired with ultra-high performance fiber reinforced concrete (UHPFRC)[J]. Composite Structures, 2016, 157(23):448-460.
[2] Doo-Yeol Yoo, Nemkumar Banthia. Mechanical properties of ultra-high-performance fiber-reinforced concrete:A review[J]. Cement and Concrete Composites, 2016, 73(5):267-280.
[3] 梁兴文, 杨鹏辉, 何伟, 等. 钢筋混凝土框架-纤维增强混凝土耗能墙结构抗震性能试验研究[J]. 工程力学, 2018, 35(1):209-218. Liang Xingwen, Yang Penghui, He Wei, et al. Ex-perimental study on seismic behavior of reinforced concrete frame-energy dissipation walls made with high performance fiber reinforced concrete[J]. Engineering Mechanics, 2018, 35(1):209-218. (in Chinese)
[4] 陆婷婷, 梁兴文. 预期损伤部位采用FRC增强梁柱板组合件的力-位移模型[J]. 工程力学, 2018, 35(2):133-143. Lu Tingting, Liang Xingwen. Force-displacement mechanical model of FRC beam-column-slab subassembly[J]. Engineering Mechanics, 2018, 35(2):133-143. (in Chinese)
[5] 党争, 梁兴文, 邓明科, 等. 局部采用纤维增强混凝土剪力墙压弯性能研究[J]. 工程力学, 2015, 32(2):120-130. Dang Zheng, Liang Xingwen, Deng Mingke, et al. Research of the compression bending behavior of shear wall with fiber-reinforced concrete in bottom region[J]. Engineering Mechanics, 2015, 32(2):120-130. (in Chinese)
[6] Luaay Hussein, Lamya Amleh. Structural behavior of ultra-high performance fiber reinforced concretenormal strength concrete or high strength concrete composite members[J]. Construction and Building Materials, 2015, 93(5):1105-1116.
[7] Ferrier E, Larbi A Si, Georgin J-F, et al. New hybrid cement-based composite material externally bonded to control RC beam cracking[J]. Construction and Building Materials, 2012, 36(6):36-45.
[8] M A Al-Osta, M N Isa, M H Baluch, et al. Flexural behavior of reinforced concrete beams strengthened with ultra-high performance fiber reinforced concrete[J]. Construction and Building Materials, 2017, 134(2):279-296.
[9] Ayman Mosallam, Mahmoud M Reda Taha, Jung J Kim, et al. Strength and ductility of RC slabs strengthened with hybrid high-performance composite retrofit system[J]. Engineering Structures, 2012, 36(3):70-80.
[10] GB/T 31387-2015, 活性粉末混凝土[S]. 北京:中国标准出版社, 2015. GB/T 31387-2015, Reactive powder concrete[S]. Beijing:China Standard Press, 2015. (in Chinese)
[11] JGJ 162-2008, 建筑施工模板安全技术规范[M]. 北京:中国建筑工业出版社, 2008. JGJ 162-2008, Technical code for safety of forms in construction[S]. Beijing:China Architecture & Building Press, 2008. (in Chinese)
[12] GB/T 50152-2012, 混凝土结构试验方法标准[S]. 北京:中国建筑工业出版社, 2012. GB/T 50152-2012, Standard for test method of concrete structures[S]. Beijing:China Architecture & Building Press, 2012. (in Chinese)
[13] GB 50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[14] 梁兴文, 史庆轩. 混凝土结构设计[M]. 第三版. 北京:中国建筑工业出版社, 2016:64-66. Liang Xingwen, Shi Qingxuan. Design of concrete structures[M]. 3rd ed. Beijing:China Architecture & Building Press, 2016:64-66. (in Chinese)
[15] Foster S J, Voo Y L, Chong K T. FE Analysis of steel fiber reinforced concrete beams failing in shear:variable engagement model[J]. ACI Structural Journal, 2006, 237(SP):55-70.
[1] 王激扬, 陈勇, 郭勇, 陈聪, 孙炳楠. 窄基输电塔分离式K型节点的受力性能试验研究[J]. 工程力学, 2019, 36(S1): 66-70.
[2] 梁兴文, 汪萍, 徐明雪, 王照耀, 于婧, 李林. 配筋超高性能混凝土梁受弯性能及承载力研究[J]. 工程力学, 2019, 36(5): 110-119.
[3] 王景全, 王震, 高玉峰, 诸钧政. 预制桥墩体系抗震性能研究进展:新材料、新理念、新应用[J]. 工程力学, 2019, 36(3): 1-23.
[4] 杨慧, 何浩祥, 闫维明. 锈蚀和疲劳耦合作用下梁桥时变承载力评估[J]. 工程力学, 2019, 36(2): 165-176.
[5] 徐明雪, 梁兴文, 于婧, 李林. UHPC梁短期刚度理论与试验研究[J]. 工程力学, 2019, 36(1): 146-154,164.
[6] 张文华, 张云升, 陈振宇. 超高性能混凝土抗缩比钻地弹侵彻试验及数值仿真[J]. 工程力学, 2018, 35(7): 167-175,186.
[7] 初明进, 张庆池, 刘继良, 邱臻, 王琳, 谢天宇. 配置不同水平钢筋的自适应分缝剪力墙受剪性能试验研究[J]. 工程力学, 2018, 35(2): 214-220.
[8] 刘君平, 徐帅, 陈宝春. 钢-UHPC组合梁与钢-普通混凝土组合梁抗弯性能对比试验研究[J]. 工程力学, 2018, 35(11): 92-98,145.
[9] 杨简, 陈宝春, 沈秀将, 林毅焌. UHPC单轴拉伸试验狗骨试件优化设计[J]. 工程力学, 2018, 35(10): 37-46,55.
[10] 庞瑞, 许清风, 梁书亭, 朱筱俊. 全装配式RC楼盖板缝节点拉剪复合受力性能试验研究[J]. 工程力学, 2018, 35(10): 112-123.
[11] 祝双, 张沛洲, 古泉, 欧进萍. 基于OpenSees的钢筋混凝土梁粘结滑移数值分析[J]. 工程力学, 2017, 34(增刊): 263-268.
[12] 李小军, 李晓虎. 核电工程双钢板混凝土组合剪力墙面内受弯性能研究[J]. 工程力学, 2017, 34(9): 43-53.
[13] 贺俊筱, 王娟, 杨庆山. 摇摆状态下古建筑木结构木柱受力性能分析及试验研究[J]. 工程力学, 2017, 34(11): 50-58.
[14] 周乐, 王晓初, 白云皓, 贾连光, 谭相培. 负载下外包钢筋混凝土加固轴心受压钢柱受力性能研究[J]. 工程力学, 2017, 34(1): 192-203.
[15] 苏庆田, 田乐, 曾明根, 邵长宇, 陈亮. 正交异性折形钢板-混凝土组合桥面板基本性能研究[J]. 工程力学, 2016, 33(增刊): 138-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日