工程力学 ›› 2019, Vol. 36 ›› Issue (S1): 78-85.doi: 10.6052/j.issn.1000-4750.2018.04.S011

• 土木工程学科 • 上一篇    下一篇

含可更换剪切型耗能梁段-高强钢组合框筒结构静力弹塑性数值分析

张浩, 连鸣, 苏明周, 程倩倩, 关彬林   

  1. 西安建筑科技大学土木工程学院, 陕西, 西安 710055
  • 收稿日期:2018-04-12 修回日期:2019-01-10 出版日期:2019-06-18 发布日期:2019-06-18
  • 通讯作者: 连鸣(1987-),男,山东人,副教授,博士,主要从事新型钢结构体系抗震性能和设计理论研究(E-mail:lianming0821@163.com). E-mail:lianming0821@163.com
  • 作者简介:张浩(1993-),男,陕西人,博士生,主要从事新型钢结构体系抗震性能研究(E-mail:zhanghao930219@163.com);苏明周(1971-),男,河南人,教授,博士,主要从事钢结构稳定与抗震、新型结构体系受力性能和设计理论研究(E-mail:sumingzhou@163.com);程倩倩(1994-),女,山西人,博士生,主要从事新型钢结构体系抗震性能研究(E-mail:chengqianqian0599@163.com);关彬林(1989-),男,湖北人,博士生,主要从事新型钢结构体系抗震性能研究(E-mail:guanbinlin@163.com).
  • 基金资助:
    国家自然科学基金项目(51708444);陕西省高校科协青年人才托举计划项目(20170517);陕西省自然科学基础研究计划项目(2018JQ5074);陕西省教育厅专项科研计划项目(18JK0456);陕西省博士后科研项目资助(2017年)

STATIC ELASTOPLASTIC ANALYSIS OF HIGH STRENGTH STEEL FABRICATED FRAMED-TUBE STRUCTURES WITH SHEAR LINKS

ZHANG Hao, LIAN Ming, SU Ming-zhou, CHENG Qian-qian, GUAN Bin-lin   

  1. School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055 China
  • Received:2018-04-12 Revised:2019-01-10 Online:2019-06-18 Published:2019-06-18

摘要: 提出了一种震后功能可快速恢复的新型结构体系—含可更换剪切型耗能梁段-高强钢组合框筒结构(简称HSS-SFTS)。为研究和比较HSS-SFTS与传统钢框筒结构(简称FTS)的抗震性能,给出了HSS-SFTS的初步设计方法,采用SAP2000各建立一个40层的HSS-SFTS和FTS算例结构,对有限元模型进行静力弹塑性分析。结果表明: HSS-SFTS在罕遇地震性能点处的层间侧移角小于FTS的相应值,结构延性得到有效提升。结构层间侧移角达到抗震规范弹塑性转角限值1/50时,HSS-SFTS中耗能梁段塑性铰处于LS状态,可以满足抗震规范中“大震不倒”的设计理念。承载力极限状态时,HSS-SFTS的层间侧移角沿结构高度方向分布均匀,没有出现明显的薄弱层,且其塑性变形与损伤主要集中于耗能梁段处,具有理想的整体破坏模式。新型结构体系有效改善了传统框筒结构的抗震性能,降低了水平地震作用,使得除耗能梁段外的非耗能构件受损程度减轻,此种新型高层钢结构更易于震后修复与功能的快速恢复。

关键词: 钢框筒结构, 高强钢, 剪切型耗能梁段, 静力弹塑性分析, 抗震性能

Abstract: A high strength steel fabricated framed-tube structure with replaceable shear links (HSS-SFTS) was proposed in this paper. A preliminary design method of HSS-SFTS was presented. The finite element models (FEMs) of one 40-story framed tube structure (FTS) and one 40-story HSS-SFTS were established in SAP2000. Static elastoplastic analyses were performed to assess their seismic performance. The analysis results indicate that the inter-story drift of the HSS-SFTS at rare earthquake performance point was less than the corresponding value of the FTS. The inter-story drift angles of the HSS-SFTS could satisfy the requirements of the inter-story deformation limit during frequent earthquakes and the requirement for collapse prevention in the seismic design code. The plastic hinges of the HSS-SFTS at the shear links occurred in the life safety state. When the ultimate strength and the inter-story drift angle distribution of the HSS-SFTS along height was relatively uniform, its plastic deformation and damage were mainly concentrated in the shear link, and it exhibits an ideal overall failure mode. The HSS-SFTS could reduce the effects of earthquakes and the damage to non-dissipative components. The HSS-SFTS could be more prone to functional recovery after earthquakes.

Key words: steel framed-tube structure, high strength steel, shear link, static elastoplastic analysis, seismic performance

中图分类号: 

  • TU393.2
[1] 曹希尧, 李家宝, 李存权. 框筒结构两种典型简化分析方法的综合比较[J]. 湖南大学学报, 1997, 24(1):87-92. Cao Xiyao, Li Jiabao, Li Cunquan. Comparison of two typical simplified analysis methods for frame tube structure[J]. Journal of Hunan University, 1997, 24(1):87-92. (in Chinese)
[2] Moon K S. Stiffness-based design methodology for steel braced tube structures:A sustainable approach[J]. Engineering Structures, 2010, 32(10):3163-3170.
[3] Nikoukalam M T, Dolatshahi K M. Development of structural shear fuse in moment resisting frames[J]. Journal of Constructional Steel Research, 2015, 114(8):349-361.
[4] Mahmoudi F, Dolatshahi K M, Mahsuli M, et al. Experimental evaluation of steel moment resisting frames with a nonlinear shear fuse[C]. Phoenix, Arizona:ASCE Geotechnical and Structural Engineering Congress, 2016:624-634.
[5] 吕西林, 陈云, 毛苑君. 结构抗震设计的新概念-可恢复功能结构[J]. 同济大学学报(自然科学版), 2011, 39(7):941-948. Lyu Xilin, Chen Yun, Mao Yuanjun. New concept of structural seismic design:earthquake resilient structures[J]. Journal of Tongji University (Natural Science), 2011, 39(7):941-948. (in Chinese)
[6] 纪晓东, 钱稼茹. 震后功能可快速恢复联肢剪力墙研究[J]. 工程力学, 2015, 32(10):1-8. Ji Xiaodong, Qian Jiaru. Study of earthquake-resilient coupled shear walls[J]. Engineering Mechanics, 2015, 32(10):1-8. (in Chinese)
[7] 吕西林, 周颖, 陈聪. 可恢复功能抗震结构新体系研究进展[J]. 地震工程与工程振动, 2014, 01(4):130-139. Lyu Xilin, Zhou Ying, Chen Cong. Research progress on innovative earthquake-resilient structural systems[J]. Earthquake Engineering & Engineering Dynamics, 2014, 1(4):130-139. (in Chinese)
[8] Roeder C W, Popov E P. Eccentrically braced steel frames for earthquakes[J]. Journal of the Structural Division, 1978, 104(11):391-412.
[9] 殷占忠, 任亚歌, 陈伟, 等. 可替换独立耗能梁段抗震性能分析[J]. 工程力学, 2016, 33(增刊1):207-213. Yin Zhanzhong, Ren Yage, Chen Wei. The seismic performance analysis of replaceable independent links[J]. Engineering Mechanics, 2016, 33(Suppl 1):207-213. (in Chinese)
[10] 石永久, 熊俊, 王元清, 等. 多层钢框架偏心支撑的抗震性能试验研究[J]. 建筑结构学报, 2010, 32(2):29-34. Shi Yongjiu, Xiong Jun, Wang Yuanqing. Experimental studies on seismic performance of multi-story steel frame with eccentric brace[J]. Journal of Building Structures, 2010, 32(2):29-34. (in Chinese)
[11] 张浩, 连鸣, 苏明周. 含可更换剪切型耗能梁段-高强钢框筒结构抗震性能分析[J/OL]. 建筑钢结构进展. http://kns.cnki.net/kcms/detail/31.1893.TU.20181210.1100.003.html, 2018-12-11. Zhang Hao, Lian Ming, Su Mingzhou. Analysis on the seismic performance of high strength steel fabricated framed-tube structure with replaceable shear link[J/OL]. Progress in Steel Building Structures. http://kns.cnki.net/kcms/detail/31.1893.TU.20181210.1100.003.html, 2018-12-11. (in Chinese)
[12] Nikoukalam M T, Dolatshahi K M. Finite element investigation of moment resisting frames with a new shear structural fuse[C]. Istanbul, Turkey:Second European Conference on Earthquake Engineering and Seismology (2ECEES), 2014:1-11.
[13] 雷淑忠, 沈祖炎, 刘振华. 超高层钢框筒结构体系截面尺寸的初步确定[J]. 建筑结构, 2005, 35(6):20-22. Lei Shuzhong, Shen Zuyan, Liu Zhenhua. Determination of section dimension for super-rise steel frame-tube structure in the preliminary design stage[J]. Building Structure, 2005, 35(6):20-22. (in Chinese)
[14] JGJ 99-2015, 高层民用建筑钢结构技术规程[S]. 北京:中国建筑工业出版社, 2015. JGJ 99-2015, Technical specification for steel structure of tall building[S]. Beijing:China Architecture& Building Press, 2015. (in Chinese)
[15] 纪晓东, 马琦峰, 王彦栋, 等. 钢连梁可更换消能梁段抗震性能试验研究[J]. 建筑结构学报, 2014, 35(6):1-11. Ji Xiaodong, Ma Qifeng, Wang Yandong, et al. Cyclic tests of replaceable shear links in steel coupling beams[J]. Journal of Building Structures, 2014, 35(6):1-11. (in Chinese)
[16] 北京金土木软件技术有限公司, 中国建筑标准设计研究院. SAP2000中文版使用指南[M]. 北京:人民交通出版社, 2006:460-486. Beijing Jintuwu Software Technology Company, China Institute Building Standard Design & Research. Chinese use guide for SAP2000[M]. Beijing:China Communications Press, 2006:460-486. (in Chinese)
[17] 杨文侠, 李春燕, 顾强. Y形偏心支撑钢框架SAP2000非线性分析模型, 兰州理工大学学报[J]. 2010, 36(5):111-114. Yang Wenxia, Li Chunyan, Gu Qiang. Nonlinear analysis model SAP2000 for eccentrically braced steel frames with Y-links[J]. Journal of Lanzhou University of Technology, 2010, 36(5):111-114. (in Chinese)
[18] GB 50017-2017, 钢结构设计标准[S]. 北京:中国建筑工业出版社, 2017. GB 50017-2017, Standard for design of steel structures[S]. Beijing:China Architecture Industry Press, 2018. (in Chinese)
[19] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture Industry Press, 2010. (in Chinese)
[1] 李达, 牟在根. 内嵌VV-SPSW平面钢框架结构抗震性能研究[J]. 工程力学, 2019, 36(S1): 210-216.
[2] 杨志坚, 韩嘉明, 雷岳强, 赵海龙, 胡嘉飞. 预应力混凝土管桩与承台连接节点抗震性能研究[J]. 工程力学, 2019, 36(S1): 248-254.
[3] 王宇航, 刘元九, 周绪红. 腹板屈曲约束钢连梁抗震性能研究[J]. 工程力学, 2019, 36(6): 49-59,69.
[4] 杨参天, 解琳琳, 李爱群, 陈越. 足尺空腔式RC框架柱抗震性能试验研究[J]. 工程力学, 2019, 36(6): 60-69.
[5] 牟犇, 王君昌, 崔瑶, 庞力艺, 松尾真太朗. 一种改进型方钢管柱与钢梁连接节点抗震性能研究[J]. 工程力学, 2019, 36(6): 164-174.
[6] 曾磊, 谢炜, 郑山锁, 陈熠光, 任雯婷. T形配钢型钢混凝土柱-钢梁框架抗震性能研究[J]. 工程力学, 2019, 36(5): 157-165.
[7] 种迅, 张蓝方, 万金亮, 王德才, 叶献国, 解琳琳, 邵徽斌. 两层带开洞预制剪力墙抗震性能试验研究与数值模拟分析[J]. 工程力学, 2019, 36(5): 176-183.
[8] 李腾飞, 苏明周, 隋龑, 马磊, 韩丹. 高强钢组合K形偏心支撑钢框架抗震性能混合试验[J]. 工程力学, 2019, 36(4): 100-108,124.
[9] 董金芝, 张富文, 李向民. 框架-预应力摇摆墙结构抗震性能试验研究[J]. 工程力学, 2019, 36(4): 167-176.
[10] 徐龙河, 武虎. 设置自复位耗能支撑的斜拉桥横向抗震性能研究[J]. 工程力学, 2019, 36(4): 177-187.
[11] 王伟, 胡书领, 邹超, 陈越时. 节点性能对分层装配支撑钢框架抗震性能的影响研究[J]. 工程力学, 2019, 36(4): 206-213.
[12] 杜咏, 孙亚凯, 李国强. 预应力钢绞线高温力学性能试验研究[J]. 工程力学, 2019, 36(4): 231-238.
[13] 王景全, 王震, 高玉峰, 诸钧政. 预制桥墩体系抗震性能研究进展:新材料、新理念、新应用[J]. 工程力学, 2019, 36(3): 1-23.
[14] 陈云, 蒋欢军, 刘涛, 万志威, 鲁正. 分级屈服型金属阻尼器抗震性能研究[J]. 工程力学, 2019, 36(3): 53-62.
[15] 蒋庆, 王瀚钦, 冯玉龙, 种迅. 铰支桁架-框架结构抗震设计与性能研究[J]. 工程力学, 2019, 36(3): 105-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日