工程力学 ›› 2019, Vol. 36 ›› Issue (5): 246-256.doi: 10.6052/j.issn.1000-4750.2018.04.0254

• 其他工程学科 • 上一篇    

基于三维头部数值模型的颅脑碰撞损伤机理研究

栗志杰1, 由小川1, 柳占立1, 庄茁1, 杨策2   

  1. 1. 清华大学航天航空学院, 北京 100084;
    2. 陆军军医大学(第三军医大学), 重庆 400038
  • 收稿日期:2018-04-20 修回日期:2018-12-07 出版日期:2019-05-25 发布日期:2019-04-03
  • 通讯作者: 由小川(1977-),男,河北人,副教授,博士,博导,从事非线性研究(E-mail:youxiaochuan@tsinghua.edu.cn). E-mail:youxiaochuan@tsinghua.edu.cn
  • 作者简介:栗志杰(1987-),男,河北人,博士生,从事生物力学与固体力学研究(E-mail:lizj15@mails.tsinghua.edu.cn);柳占立(1981-),男,河南人,副教授,博士,博导,从事非线性研究(E-mail:liuzhanli@mail.tsinghua.edu.cn);庄茁(1952-),男,辽宁人,教授,博士,博导,国家973计划首席科学家,从事非线性研究(E-mail:zhuangz@tsinghua.edu.cn);杨策(1973-),男,山西人,副教授,博士,博导,从事创伤医学研究(E-mail:sepsismd@126.com).
  • 基金资助:
    国家重点基础研究发展计划项目

STUDY ON THE MECHANISM OF BRAIN INJURY DURING HEAD IMPACT BASED ON THE THREE-DIMENSIONAL NUMERICAL HEAD MODEL

LI Zhi-jie1, YOU Xiao-chuan1, LIU Zhan-li1, ZHUANG Zhuo1, YANG Ce2   

  1. 1. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China;
    2. Army Military Medical University(Third Military Medical University), Chongqing 400038, China
  • Received:2018-04-20 Revised:2018-12-07 Online:2019-05-25 Published:2019-04-03

摘要: 头部碰撞载荷会致使颅脑发生创伤性脑损伤(Traumatic Brain Injury,TBI)。其中,脑组织挫裂伤是最为常见的一种,具有高死亡率与高致残率的特性。该文基于数值模拟方法对其开展相关研究,揭示其损伤机理,对该类损伤的预防救治与相关防护设备的开发都具有重要意义。首先,该文基于颅脑的核磁共振切片建立了人体头部三维数值模型,该模型真实地反映了颅脑的生理特征与细节构造。在该模型中,颅骨采用典型类三明治结构进行表征,其内外层为刚度与密度较大的骨密质,中间层为骨松质。为了真实反映脑组织与颅骨间的相互作用,将脑脊液与蛛网膜小梁简化为均质整体,采用状态方程表征脑脊液的液态特性,并通过较小的剪切模量表征蛛网膜小梁的剪切传递作用。然后,基于死尸前额碰撞实验对三维头部数值模型的有效性进行验证。该头部模型采用三种不同的颈部约束边界条件对前额碰撞实验进行数值模拟,模拟结果表明:自由边界条件下的模拟结果与实验数据吻合良好,验证了该头部碰撞模型的有效性;而在竖向约束边界条件或固定边界条件下颈部的约束过于刚硬,导致撞击处与对撞处的颅内正、负压力交替变换,与实验结果相比出现较大偏差。最后,利用验证的头部碰撞模型对枕部碰撞过程进行数值模拟,并结合前额碰撞的模拟结果,分别从脑组织压力(体积变形)与Mises应力(剪切变形)等方面对颅脑的动态响应规律进行分析;进一步结合医学上颅脑碰撞损伤的统计数据,揭示了脑组织挫裂伤的损伤机理,建立了相应的损伤准则。

关键词: 生物力学, 有限元方法, 三维头部模型, 碰撞, 挫裂伤, 损伤准则

Abstract: Head collisions can induce Traumatic Brain Injury (TBI), and the brain contusion is the most common one with high lethality and high disability rate. Based on the numerical simulation method, studies are carrid out to reveal the mechanism of the brain contusion in this paper, which is of great significance for prevention and treatment of this brain injury as well as development of protective equipments. Firstly, a three-dimensional (3D) numerical head model is established based on Magnetic Resonance Imaging (MRI) of the human head with physiological characteristics and detailed structures. In this model, the skull is characterized by the typical sandwich structure. The inner and outer layers are compact bone with higher rigidity and density, while the middle layer is spongy bone with less rigidity and density. In order to simulate the interaction between the brain and the skull, the Cerebrospinal Fluid (CSF) and the arachnoid trabeculae are simplified as one substance. The state equation is used to characterize the liquid properties of CSF, and a small shear modulus is considered for the shear transfer of the arachnoid trabecula. Then, the validity of the numerical head model is verified based on the forehead collision of a dead body. The numerical model adopts three different boundary conditions of the neck to simulate this forehead collision, namely the free boundary, vertical boundary and fixed boundary condition. Simulation results for the free boundary are in good agreement with experimental data, illustrating the validity of the numerical head model for head collisions. On the contrary, the vertical or fixed boundary condition leads to large deviation from experimental results, because these two boundaries are over constraint resulting in alternations of positive and negative intracranial pressures at the impact and opposite positions. Finally, the numerical head model verified above is used to simulate the head impact at the occiput. Thus, simulation results for the forehead collision and occiput collision are obtained. The analyses are carried out on dynamic rules of the brain pressure (volume deformation) and Mises stress (shear deformation). By combining dynamic rules with statistical clinical data of TBI, the damage mechanism of brain contusion is revealed and the corresponding criterion is established.

Key words: biomechanics, finite element method, 3D head model, head impact, contusion, damage criteria

中图分类号: 

  • R318.01
[1] World Health Organization. Global status report on road safety 2015[M]. World Health Organization, 2015.
[2] Dixit P, Liu G R. A review on recent development of finite element models for head injury simulations[J]. Archives of Computational Methods in Engineering, 2017, 24(4):979-1031.
[3] Nahum A M, Smith R, Ard C C. Intracranial pressure dynamics during head impact[R]. Proceedings of 21st Stapp Car Crash Conference. Pennsylvania:Society of Automotive Engineers, 1977:339-366.
[4] Trosseille X, Tarriere C, Lavaste F, et al. Development of a FEM of the human head according to a specific test protocol[R]. Proceedings the 36th Car Crash Conference. Seattle:Society of Automotive Engineers, 1992:235-253.
[5] Yoganandan N, Pintar F A, Sances A, et al. Biomechanics of skull fracture[J]. Journal of neurotrauma, 1995, 12(4):659-668.
[6] Hardy W N, Foster C D, Mason M J, et al. Investigation of head injury mechanisms using neutral density technology and high-speed biplanar X-ray[J]. Stapp Car Crash Journal, 2001, 45:337-368.
[7] Kilbourne M, Kuehn R, Tosun C, et al. Novel model of frontal impact closed head injury in the rat[J]. Journal of Neurotrauma, 2009, 26(12):2233-2243.
[8] Feng Y, Gao Y, Wang T, et al. A longitudinal study of the mechanical properties of injured brain tissue in a mouse model[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71:407-415.
[9] Elkin B S, Morrison B. Region-specific tolerance criteria for the living brain[J]. Stapp Car Crash J, 2007, 51(10):127-138.
[10] Dollé J P, Morrison B, Schloss R S, et al. Brain-on-a-chip microsystem for investigating traumatic brain injury:Axon diameter and mitochondrial membrane changes play a significant role in axonal response to strain injuries[J]. Technology, 2014, 2(2):106-117.
[11] Miyazaki Y, Tachiya H, Anata K, et al. Measurement of pressure responses in a physical model of a human head with high shape fidelity based on CT/MRI data[J]. International Journal of Modern Physics B, 2008, 22(9):1718-1723.
[12] Salzar R S, Treichler D, Wardlaw A, et al. Experimental investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury in post-mortem human subject heads[J]. Journal of Neurotrauma, 2017, 34(8):1589-1602.
[13] 张建国, 王芳, 薛强. 后碰撞中人体颈部动力学响应的有限元分析[J]. 工程力学, 2010, 27(4):208-211. Zhang Jianguo, Wang Fang, Xue Qiang. Fe anlysis of human neck dynamic responses under rear-end impact[J]. Engineering Mechanics, 2010, 27(4):208-211. (in Chinese)
[14] Kleiven S. Predictors for traumatic brain injuries evaluated through accident reconstructions[R]. Stapp Car Crash Journal, 2007, 51:81-114.
[15] Ganpule S, Alai A, Plougonven E, et al. Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches[J]. Biomechanics and Modeling in Mechanobiology, 2013, 12(3):511-531.
[16] Chafi M S, Ganpule S, Gu L, et al. Dynamic response of brain subjected to blast loadings:influence of frequency ranges[J]. International Journal of Applied Mechanics, 2011, 3(4):803-823.
[17] Wang C, Pahk J B, Balaban C D, et al. Biomechanical Assessment of The Bridging Vein Rupture of Blast-Induced Traumatic Brain Injury Using The Finite Element Human Head Model[C]. ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012:795-805.
[18] Moore D F, Jérusalem A, Nyein M, et al. Computational biology-modeling of primary blast effects on the central nervous system[J]. Neuroimage, 2009, 47:T10-T20.
[19] Versace J. A review of severity index[C]. Proc of 15th Stapp Car Crash Conference. San Diego:Society of Automotive Engineers, 1971:771-796.
[20] Newman J A. A generalized acceleration model for brain injury threshold (GAMBIT)[C]//Proceedings of International IRCOBI Conference, 1986.
[21] Newman J A, Shewchenko N. A proposed new biomechanical head injury assessment function-the maximum power index[R]. SAE Technical Paper, 2000.
[22] Ward C, Chan M, Nahum A. Intracranial pressure-a brain injury criterion[R]. SAE Technical Paper, 1980.
[23] Takhounts E G, Eppinger R H, Campbell J Q, et al. On the development of the SIMon finite element head model[C]//Sae Conference ProceedingS P. Sae; 1999, 2003:107-134.
[24] Stalnaker R L, Alem N M, Benson J B. Validation studies for head impact injury model[M]. US Department of Transportation, National Highway Traffic Safety Administration, 1978.
[25] Nusholtz G S, Lux P, Kaiker P, et al. Head impact response-Skull deformation and angular accelerations[J]. SAE transactions, 1984:800-833.
[26] Nusholtz G S, Wylie B, Glascoe L G. Cavitation/boundary effects in a simple head impact model[J]. Aviation Space & Environmental Medicine,1995, 66(7):661-667.
[27] Chu C S, Lin M S, Huang H M, et al. Finite element analysis of cerebral contusion[J]. Journal of Biomechanics, 1994, 27(2):187-194.
[28] Huang H M, Lee M C, Lee S Y, et al. Finite element analysis of brain contusion:an indirect impact study[J]. Medical and Biological Engineering and Computing, 2000, 38(3):253-259.
[29] Mao H, Yang K H. Investigation of brain contusion mechanism and threshold by combining finite element analysis with in vivo histology data[J]. International Journal for Numerical Methods in Biomedical Engineering, 2011, 27(3):357-366.
[30] David L. Felten, Ralph F. Józefowicz著. 奈特人体神经解剖彩色图谱[M]. 崔益群译. 北京:人民卫生出版社, 2006:42. David L. Felten, Ralph F. Józefowicz. Netter's atlas of human neuroscience[M]. Translated by Cui Yiqun. Beijing:People's Medical Publishing House, 2006:42. (in Chinese)
[31] Chafi M S, Karami G, Ziejewski M. Biomechanical assessment of brain dynamic responses due to blast pressure waves[J]. Annals of biomedical engineering, 2010, 38(2):490-504.
[32] Benedict J V, Harris E H, Von Rosenberg D U. An analytical investigation of the cavitation hypothesis of brain damage[J]. Journal of Basic Engineering, 1970, 92(3):597-603.
[33] Zhang L, Yang K H, Dwarampudi R, et al. Recent advances in brain injury research:a new human head model development and validation[J]. Stapp Car Crash J, 2001, 45(11):369-394.
[34] Willinger R, Baumgartner D, Chinn B, et al. Head tolerance limits derived from numerical replication of real world accidents[C]. Proceedings of the International Research Council on the Biomechanics of Injury conference. International Research Council on Biomechanics of Injury, 2000, 28:209-221.
[35] 吴在德. 外科学[M]. 第7版. 北京:人民卫生出版社, 2012:245. Wu Zaide. Surgery[M]. 7th ed. Beijing:People's Medical Publishing House, 2012:245. (in Chinese)
[1] 梁东, 金浩, 肖军华, 周顺华. 软土地区侧压损失对盾构隧道受力及变形的影响[J]. 工程力学, 2019, 36(5): 148-156,175.
[2] 贾宏宇, 杜修力, 李兰平, 黄胜前, 郑史雄. 地震作用下梁体碰撞间隙宽度的概率分析方法[J]. 工程力学, 2018, 35(8): 39-45.
[3] 宋子杰, 胡志强. 预测船舶碰撞与搁浅结构动力响应的程序实现[J]. 工程力学, 2018, 35(8): 245-256.
[4] 石础, 罗宇, 胡志强. 考虑失效的非线性Burgers'海冰模型及其数值应用[J]. 工程力学, 2018, 35(7): 249-256.
[5] 解江, 张雪晗, 苏璇, 牟浩蕾, 周建, 冯振宇, 蓝元沛. 铺层顺序对复合材料薄壁圆管轴向压溃吸能特性的影响研究[J]. 工程力学, 2018, 35(6): 231-239.
[6] 李珂, 葛耀君, 赵林, 夏锦林. 大跨度斜拉桥气弹模型对结构静风响应的反应能力的数值研究[J]. 工程力学, 2018, 35(3): 79-85.
[7] 沙奔, 王浩, 陶天友, 吴宜峰, 李爱群. 考虑混凝土损伤的隔震连续梁桥碰撞响应分析[J]. 工程力学, 2018, 35(3): 193-199.
[8] 狄勤丰, 宋海涛, 陈锋, 王文昌, 张鹤, 靳泽中. 复杂载荷下油井管接头数值仿真平台的研发与应用[J]. 工程力学, 2017, 34(增刊): 295-299.
[9] 张磊鑫, 龙晓鸿, 樊剑, 陈蓓蕾. 考虑碰撞的隔震桥梁易损性分析[J]. 工程力学, 2017, 34(增刊): 99-104.
[10] 胡波, 李国强. 基于Campbell模型的卡车与防撞柱最大碰撞力修正计算方法[J]. 工程力学, 2017, 34(7): 79-88,155.
[11] 姜超, 胡志强, 刘昆, 王晋. 导管架平台圆形管柱撞击力的估算方法研究[J]. 工程力学, 2017, 34(7): 249-256.
[12] 贾宏宇, 杜修力, 李晰, 郑史雄, 陈志伟. 地震作用下高墩铁路桥梁梁体碰撞间隙宽度需求机理分析[J]. 工程力学, 2017, 34(2): 207-215.
[13] 颜学渊, 祁皑, 毛会敏, 张超, 徐小勇. 近场地震作用下巨-子隔震结构振动台试验[J]. 工程力学, 2017, 34(11): 109-115,144.
[14] 孙颖, 陈天海, 卓卫东, 谷音, 许智星. 长周期地震动作用下隔震连续梁桥地震反应特性研究[J]. 工程力学, 2016, 33(增刊): 244-250.
[15] 谷良贤, 王一凡. 几何非线性假设下温度大范围变化瞬态热力耦合问题研究[J]. 工程力学, 2016, 33(8): 221-230.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程麦理. 黄土场地桩基横向力学行为数值模拟[J]. 工程力学, 0, (): 0 .
[2] 张建春, 张大山, 董毓利, 王卫华. 火灾下钢-混凝土组合梁内力变化的试验研究 [J]. 工程力学, 0, (): 0 .
[3] 柯晓军, 苏益声, 商效瑀, 孙海洋. 钢管混凝土组合柱压弯性能试验及承载力计算[J]. 工程力学, 2018, 35(12): 134 -142 .
[4] 卜一之, 金 通, 李 俊, 张清华. 纵肋与横隔板交叉构造细节穿透型疲劳裂纹扩展特性及其加固方法研究 [J]. 工程力学, 0, (): 0 .
[5] 钱海峰 赵婧同 王元清 王登峰. 考虑除尘器箱体墙板-立柱协同受力时立柱在横向荷载作用下的内力计算[J]. 工程力学, 0, (): 0 .
[6] 蒋庆, 王瀚钦, 冯玉龙, 种迅. 损伤可控的含减震外挂墙板RC 框架结构抗震性能分析[J]. 工程力学, 0, (): 0 .
[7] 谢昭波, 解琳琳, 林元庆, 陆新征. 典型框架‐核心筒单重与双重抗侧力体系的抗震性能与剪力分担研究[J]. 工程力学, 0, (): 0 .
[8] 曹胜涛, 李志山, 刘付钧, 黄忠海. 基于Bouc-Wen 模型的消能减震结构显式非线性时程分析 [J]. 工程力学, 0, (): 0 .
[9] 焦驰宇, 马银强, 刘陆宇, 龙佩恒, 侯苏伟. FPS支座双向加载拟静力试验与数值模拟研究 [J]. 工程力学, 0, (): 0 .
[10] 赵志鹏, 张瑞甫, 陈清军, 潘超, 王超. 基于减震比设计方法的惯容减震结构分析 [J]. 工程力学, 0, (): 0 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日