工程力学 ›› 2019, Vol. 36 ›› Issue (6): 119-127,146.doi: 10.6052/j.issn.1000-4750.2018.04.0249

• 土木工程学科 • 上一篇    下一篇

装配式自复位耗能支撑恢复力模型与试验验证

徐龙河1, 孙雨生1, 要世乾1, 李忠献2   

  1. 1. 北京交通大学土木建筑工程学院, 北京 100044;
    2. 天津大学滨海土木工程结构与安全教育部重点实验室, 天津 300072
  • 收稿日期:2018-04-18 修回日期:2018-11-16 出版日期:2019-06-25 发布日期:2019-05-31
  • 通讯作者: 徐龙河(1976-),男,黑龙江人,教授,博士,博导,从事结构抗震与健康监测研究(E-mail:lhxu@bjtu.edu.cn). E-mail:lhxu@bjtu.edu.cn
  • 作者简介:孙雨生(1996-),男,安徽省人,硕士生,从事结构抗震研究(E-mail:17121106@bjtu.edu.cn);要世乾(1993-),男,河北省人,硕士生,从事结构抗震研究(E-mail:15121118@bjtu.edu.cn);李忠献(1961-),男,安徽省人,长江学者特聘教授,博士,从事工程结构抗震抗爆、减灾控制与健康监测研究(E-mail:zxli@tju.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51578058);北京市自然科学基金项目(8172038)

RESTORING FORCE MODEL AND EXPERIMENTAL VERIFICATION OF AN ASSEMBLED SELF-CENTERING ENERGY DISSIPATION BRACE

XU Long-he1, SUN Yu-sheng1, YAO Shi-qian1, LI Zhong-xian2   

  1. 1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China;
    2. Key Laboratory of Coast Civil Structure Safety of China Ministry of Education, Tianjin University, Tianjin 300072, China
  • Received:2018-04-18 Revised:2018-11-16 Online:2019-06-25 Published:2019-05-31

摘要: 提出一种装配式自复位耗能(ASCED)支撑,该支撑主要由核心杆、外管、摩擦耗能系统和碟簧复位系统组成。对ASCED支撑在低周往复荷载作用下的工作原理及力学性能进行了介绍,基于经典的Bouc-Wen模型建立了ASCED支撑的恢复力模型。设计并加工了一长为1.2 m的ASCED支撑试件,对其进行了拟静力试验,研究了支撑滞回特性、耗能能力、残余变形等性能。结果表明在低周往复荷载下支撑的摩擦耗能系统与碟簧复位系统能有效的共同工作,呈现出饱满的旗形滞回曲线,具有稳定的耗能能力和良好的自复位性能。恢复力模型计算得到的支撑滞回曲线与试验结果吻合较好,残余变形接近,表明所建立的恢复力模型能够准确描述ASCED支撑在低周往复荷载下的滞回特性及自复位性能。

关键词: 装配式自复位耗能支撑, 恢复力模型, 滞回特性, 拟静力试验, 残余变形

Abstract: An assembled self-centering energy dissipation (ASCED) brace is proposed, which consists of an inner bar, an outer tube, a friction energy dissipation system and a disc-spring self-centering system. The working principle and mechanical behavior of the ASCED brace under low cyclic loading are presented. A restoring force model of the ASCED brace is developed on the basis of the classical Bouc-Wen model. An ASCED brace specimen with a total length of 1.2 m was designed and fabricated, and a series of quasi-static tests were conducted to study its hysteretic behavior, energy dissipation capacity, residual deformation and other properties. The results indicate that the friction energy dissipation system and the disc-spring self-centering system of the ASCED brace can work together effectively, and the ASCED brace exhibits full hysteretic responses with stable energy dissipation and excellent self-centering capabilities. The hysteresis curve calculated by the restoring force model agrees well with the experimental results and has similar residual deformation, indicating that the proposed restoring force model can accurately describe the hysteretic behavior and self-centering performance of the ASCED brace.

Key words: assembled self-centering energy dissipation brace, restoring force model, hysteretic behavior, quasi-static test, residual deformation

中图分类号: 

  • TU352.11
[1] Tremblay R, Robert N. Seismic performance of low-and medium-rise chevron braced steel frame[J]. Canadian Journal of Civil Engineering, 2011, 27(6):1192-1206.
[2] Christopoulos C, Pampanin S, Nigel Priestley M J. Performance-based seismic response of frame structures including residual deformations. Part I:Single-degree of freedom systems[J]. Journal of Earthquake Engineering, 2003, 7(1):97-118.
[3] Zhu S, Zhang Y. Seismic behavior of self-centering braced frame buildings with reusable hysteretic damping brace[J]. Earthquake engineering & structural dynamics, 2007, 36(10):1329-1346.
[4] Christopoulos C, Tremblay R, Kim H J, et al. Self-centering energy dissipative bracing system for the seismic resistance of structures:development and validation[J]. Journal of Structural Engineering, 2008, 134(1):96-107.
[5] Chou C C, Wang Y C, Chen J H. Seismic design and behavior of post-tensioned steel connections including effects of a composite slab[J]. Engineering Structures, 2008, 30(11):3014-3023.
[6] Chou C C, Chen J H. Seismic design and shake table tests of a steel post-tensioned self-centering moment frame with a slab accommodating frame expansion[J]. Earthquake Engineering & Structural Dynamics, 2011, 40(11):1241-1261.
[7] Miller D J. Development and experimental validation of self-centering buckling-restrained braces with shape memory alloy[D]. Urbana, Illinois:University of Illinois at Urbana-Champaign, 2011:76-129.
[8] Miller D J, Fahnestock L A, Eatherton M R. Self-centering buckling-restrained braces for advanced seismic performance[C]//Proceedings of the 2011 Structures Congress. Las Vegas, USA:Structural Engineering Institute of ASCE, 2011:960-970.
[9] Miller D J, Fahnestock L A, Eatherton M R. Development and experimental validation of a nickel-titanium shape memory alloy self-centering buckling-restrained brace[J]. Engineering Structures, 2012, 40:288-298.
[10] 刘璐. 自复位防屈曲支撑结构抗震性能及设计方法[D]. 哈尔滨:哈尔滨工业大学, 2013. Liu Lu. Seismic behavior and design of structure with self-centering buckling-restrained braces[D]. Harbin:Harbin Institute of Technology, 2013. (in Chinese)
[11] 刘璐, 吴斌, 李伟, 等. 自复位防屈曲支撑结构动力位移反应的关键参数[J]. 工程力学, 2016, 33(1):188-194. Liu Lu, Wu Bin, Li Wei, et al. Key parameters of structure with self-centering buckling-restrained braces for seismic analysis[J]. Engineering Mechanics, 2016, 33(1):188-194. (in Chinese)
[12] 刘璐, 吴斌, 李伟, 等. 等效线性化方法在自复位防屈曲支撑结构中的应用[J]. 工程力学, 2016, 33(3):204-213. Liu Lu, Wu Bin, Li Wei, et al. The application of the equivalent linearization methodology in self-centering buckling-restrained braced frames[J]. Engineering Mechanics, 2016, 33(3):204-213. (in Chinese)
[13] 徐龙河, 樊晓伟, 代长顺, 等. 预压弹簧自恢复耗能支撑受力性能分析与试验研究[J]. 建筑结构学报, 2016, 37(9):142-148. Xu Longhe, Fan Xiaowei, Dai Changshun, et al. Mechanical behavior analysis and experimental study on pre-pressed spring self-centering energy dissipation brace[J]. Journal of Building Structures, 2016, 37(9):142-148. (in Chinese)
[14] 徐龙河, 樊晓伟, 逯登成, 等. 预压弹簧自恢复耗能支撑恢复力模型与滞回特性研究[J]. 工程力学, 2016, 33(10):116-122. Xu Longhe, Fan Xiaowei, Lu Dengcheng, et al. Study on restoring force model and hysteretic behaviors of pre-pressed spring self-centering energy dissipation brace[J]. Engineering Mechanics, 2016, 33(10):116-122. (in Chinese)
[15] Xu Longhe, Fan Xiaowei, Li Zhongxian. Experimental behavior and analysis of self-centering steel brace with pre-pressed disc springs[J]. Journal of Constructional Steel Research, 2017, 139:363-373.
[16] 高丛峰. 温度和应变率对拉伸载荷下记忆合金本构关系的影响[J]. 天津大学学报, 2001, 34(3):372-375. Gao Congfeng. Study on effect of temperature and strain rate on constitutive relation of shape memory alloy under tension[J]. Journal of Tianjin University, 2001, 34(3):372-375. (in Chinese).
[17] Ismail M, Ikhouane F, José Rodellar. The hysteresis Bouc-Wen model, a survey[J]. Archives of Computational Methods in Engineering, 2009, 16(2):161-188.
[18] Wen Y K. Method for random vibration of hysteretic systems[J]. Journal of Engineering Mechanics, 1976, 102(2):249-263.
[19] Rodellar F I J. Systems with hysteresis-analysis, identification and control using the Bouc-Wen model[M]. West Sussex, England:John Wiley & Sons Ltd, 2007:14-18.
[20] Triantafyllou S, Koumousis V. An inelastic Timoshenko beam element with axial-shear-flexural interaction[J]. Computational Mechanics, 2011, 48(6):713-727.
[21] Xu Longhe, Fan Xiaowei, Li Zhongxian. Development and experimental verification of a pre-pressed spring self-centering energy dissipation brace[J]. Engineering Structures, 2016, 127:49-61.
[22] Ma F, Zhang H, Bockstedte A, et al. Parameters analysis of the differential model of hysteresis[J]. Journal of Applied Mechanics, 2004, 71(3):342-349.
[23] 余波, 洪汉平, 杨绿峰. 非弹性体系地震动力响应分析的新型单轴Bouc-Wen模型[J]. 工程力学, 2012, 29(12):265-294. Yu Bo, Hong Hanping, Yang Lüfeng. Improved uniaxial Bouc-Wen model for seismic dynamic response analysis of inelastic system[J]. Engineering Mechanics, 2012, 29(12):265-294. (in Chinese)
[24] Goda K, Hong H P, Lee C S. Probabilistic characteristics of seismic ductility demand of SDOF systems with Bouc-Wen hysteretic behavior[J]. Journal of Earthquake Engineering, 2009, 13(5):600-622.
[1] 李达, 牟在根. 内嵌VV-SPSW平面钢框架结构抗震性能研究[J]. 工程力学, 2019, 36(S1): 210-216.
[2] 隋䶮, 薛建阳, 董金爽, 张锡成, 谢启芳, 白福玉. 附设粘滞阻尼器的混凝土仿古建筑梁-柱节点恢复力模型试验研究[J]. 工程力学, 2019, 36(S1): 44-53.
[3] 焦驰宇, 马银强, 刘陆宇, 龙佩恒, 侯苏伟. FPS支座双向加载拟静力试验与数值模拟研究[J]. 工程力学, 2019, 36(S1): 86-91.
[4] 卢啸, 吕泉林. 自复位粘弹性腹杆的力学原理与滞回性能研究[J]. 工程力学, 2019, 36(6): 138-146.
[5] 黄宙, 李宏男, 付兴. 自复位放大位移型SMA阻尼器优化设计方法研究[J]. 工程力学, 2019, 36(6): 202-210.
[6] 曾磊, 谢炜, 郑山锁, 陈熠光, 任雯婷. T形配钢型钢混凝土柱-钢梁框架抗震性能研究[J]. 工程力学, 2019, 36(5): 157-165.
[7] 种迅, 张蓝方, 万金亮, 王德才, 叶献国, 解琳琳, 邵徽斌. 两层带开洞预制剪力墙抗震性能试验研究与数值模拟分析[J]. 工程力学, 2019, 36(5): 176-183.
[8] 曹琛, 郑山锁, 胡卫兵, 赵彦堂, 郑捷, 周炎. 近海大气环境下锈蚀RC框架梁恢复力模型研究[J]. 工程力学, 2019, 36(4): 125-134.
[9] 董金芝, 张富文, 李向民. 框架-预应力摇摆墙结构抗震性能试验研究[J]. 工程力学, 2019, 36(4): 167-176.
[10] 邓明科, 吕浩, 宋恒钊. 外包钢板-高延性混凝土组合连梁抗震性能试验研究[J]. 工程力学, 2019, 36(3): 192-202.
[11] 陈云, 陈超, 蒋欢军, 万志威, 刘涛. O型钢板-高阻尼黏弹性复合型消能器的力学性能试验与分析[J]. 工程力学, 2019, 36(1): 119-128.
[12] 尚庆学, 李泽, 刘瑞康, 王涛. 管线系统抗震支架力学试验研究[J]. 工程力学, 2018, 35(S1): 120-125,133.
[13] 朱柏洁, 张令心, 王涛. 轴力作用下剪切钢板阻尼器力学性能试验研究[J]. 工程力学, 2018, 35(S1): 140-144.
[14] 肖水晶, 徐龙河, 卢啸. 具有复位功能的钢筋混凝土剪力墙设计与性能研究[J]. 工程力学, 2018, 35(8): 130-137.
[15] 徐龙河, 王坤鹏, 谢行思, 李忠献. 具有复位功能的阻尼耗能支撑滞回模型与抗震性能研究[J]. 工程力学, 2018, 35(7): 39-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张冬娟;崔振山;李玉强;阮雪榆. 平面应变板料拉弯成形回弹理论分析[J]. 工程力学, 2007, 24(7): 0 -071 .
[2] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[3] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[4] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[5] 于琦;孟少平;吴京;郑开启. 预应力混凝土结构组合式非线性分析模型[J]. 工程力学, 2011, 28(11): 130 -137 .
[6] 赵同峰;欧阳伟;郝晓彬. 方钢管钢骨高强混凝土压弯剪承载力分析[J]. 工程力学, 2011, 28(11): 153 -158, .
[7] 张慕宇;杨智春;王乐;丁燕. 复合材料梁结构损伤定位的无参考点互相关分析方法[J]. 工程力学, 2011, 28(11): 166 -169 .
[8] 郭佳民;董石麟;袁行飞. 随机缺陷模态法在弦支穹顶稳定性计算中的应用[J]. 工程力学, 2011, 28(11): 178 -183 .
[9] 祝效华;王宇;童华;刘应华. 基于弹塑性力学的油气井打捞公锥造扣全过程分析和评价[J]. 工程力学, 2011, 28(11): 184 -189 .
[10] 黄友钦;顾明. 风雪耦合作用下单层柱面网壳的动力稳定[J]. 工程力学, 2011, 28(11): 210 -217, .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日