工程力学 ›› 2019, Vol. 36 ›› Issue (11): 230-240.doi: 10.6052/j.issn.1000-4750.2018.04.0237

• 其他工程学科 • 上一篇    下一篇

含脱层单向铺设层合梁非线性后屈曲分析

李萍, 金福松, 简方, 夏飞, 薛江红, 熊颖   

  1. 暨南大学力学与建筑工程学院应用力学研究所“重大工程灾害与控制”教育部重点实验室, 广东, 广州 510632
  • 收稿日期:2018-04-11 修回日期:2019-07-24 出版日期:2019-11-13 发布日期:2019-09-29
  • 通讯作者: 薛江红(1965-),女,四川人,教授,博士,博导,主要从事复合材料结构力学研究(E-mail:txuej@jnu.edu.cn). E-mail:txuej@jnu.edu.cn
  • 作者简介:李萍(1994-),女,湖北人,硕士生,主要从事复合材料结构力学研究(E-mail:1311235440@qq.com);金福松(1995-),男,湖北人,硕士生,主要从事复合材料结构力学研究(E-mail:641217760@qq.com);简方(1997-),男,重庆人,本科生,主要从事复合材料结构力学研究(E-mail:819917473@qq.com);夏飞(1994-),男,河南人,硕士生,主要从事复合材料结构力学研究(E-mail:1581058682@qq.com);熊颖(1995-),女,湖北人,硕士生,主要从事复合材料结构力学研究(E-mail:610373474@qq.com).
  • 基金资助:
    广东省自然科学基金面上项目(2017A030313013)

NONLINEAR POST-BUCKLING ANALYSIS OF UNIDIRECTIONAL LAMINATED BEAMS WITH DELAMINATION

LI Ping, JIN Fu-song, JIAN Fang, XIA Fei, XUE Jiang-hong, XIONG Ying   

  1. School of Mechanics and Construction Engineering Institute of Applied Mechanics, Jinan University, Key Laboratory of Disaster Forecast and Control in Engineering Ministry of Education, Guangzhou, Guangdong 510632, China
  • Received:2018-04-11 Revised:2019-07-24 Online:2019-11-13 Published:2019-09-29

摘要: 采用四分区模型,将含脱层单向铺设复合材料层合板梁分为4个子梁,根据复合材料层合理论,考虑后屈曲路径上位于脱层界面上、下子梁之间的局部受力与变形机制,建立了子梁之间接触力与变形之间的非线性定量关系。在此基础上,结合可伸长梁的几何非线性理论,推导出了计及接触效应的各子梁的非线性后屈曲控制方程。设定简支板梁的边界条件以及脱层前沿处各子梁之间力和位移的连续性条件,通过对控制方程和定解条件归一化,采用小参数摄动法求解,并根据梁的平衡微分方程的特点,解析其通解与特解的构造,获得了含脱层单向铺设层合梁受轴向压力作用的临界屈曲荷载及后屈曲平衡路径的理论解。通过对含脱层单向铺设的复合材料层合梁进行数值分析,综合讨论了脱层长度和深度等对层合板梁的临界屈曲载荷及接触性能的影响,并将所得的理论解与ABAQUS有限元分析得到的结果进行对比,结果表明二者高度吻合。研究发现梁的屈曲模态包含宏观的整体失效模态和界面的微观屈曲模态。梁的屈曲荷载和接触性能都是其固有属性,前者受梁的几何参数和材料参数的影响较显著,而后者则主要受脱层的位置和大小影响。

关键词: 接触效应, 后屈曲, 层合梁, 摄动法, 脱层

Abstract: The unidirectional composite beam with buried delamination is divided into four sub-regions. Using the theory for composite laminates, the nonlinear relationship between the contact force and the deflections of the sub-regionsis established. The governing equations are derived by introducing the available contact effect into the geometric nonlinear theory of extensible beams. The four sub-regions are integrated into a whole beam by employing the continuity conditions at the delamination fronts. Assuming simply supported boundary conditions, the governing equations are solved through the perturbation approach. The analytical solutions of the buckling load and the post-buckling equilibrium path for the delaminated unidirectional composite beam are obtained by examining the composition of the differential equation of the beam and by analyzing the characteristics of its general and particular solutions. The effects of delamination length and depth on the critical buckling load and contact performance of the delaminated beam are discussed by numerical analysis. The theoretical solutions are compared with the results obtained from ABAQUS finite element analysis. The results show that the two solutions are in good agreement with each other. It is found that the buckling modes of the delaminated beam includes macroscopic failure modes and micro-buckling modes at the interfaces. Both the buckling load and contact performance are inherent properties of the delaminated beam. The former is affected by the geometric parameters and material properties of the beam, while the latter is mainly affected by the depth and length of the delamination.

Key words: contact effect, post-buckling, laminated beams, perturbation approach, delamination

中图分类号: 

  • TB332
[1] 白瑞祥, 王蔓, 陈浩然. 冲击后含损伤复合材料格栅加筋板的后屈曲[J]. 复合材料学报, 2006, 23(3):141-145. Bai Ruixiang, Wang Man, Chen Haoran. Postbuckling behavior of damaged advanced grid stiffened structure after impact[J]. Acta Materiae Compositae Sinica, 2006, 23(3):141-145. (in Chinese)
[2] 杨刚, 于丰, 张爱锋, 等. 层板分层后屈曲分析[J]. 玻璃钢/复合材料, 2003(3):3-7. Yang Gang, Yu Feng, Zhang Aifeng, et al. Postbuckling analysis of laminates with delamination[J]. Fiber Reinforced Plastics/Composite, 2003(3):3-7. (in Chinese)
[3] 成正爱, 姚卫星. 含分层损伤复合材料层合板后屈曲扩展分析[J]. 江苏航空, 2012(增刊1):9-12. Cheng Zhengai, Yao Weixing. Post-buckling growth analysis of composite laminates with delamination damage[J]. Jiangsu Aviation, 2012(Suppl 1):9-12. (in Chinese)
[4] Bruno D, Greco F, Lonetti P. A coupled interfacemultilayer approach for mixed mode delamination and contact analysis in laminated composites[J]. International Journal of Solids & Structures, 2003, 40(26):7245-7268.
[5] Ma X, Butterworth J W, Clifton C. Compressive buckling analysis of plates in unilateral contact[J]. International Journal of Solids & Structures, 2007, 44(9):2852-2862.
[6] Chen H, Hong M, Liu Y. Dynamic behavior of delaminated plates considering progressive failure process[J]. Composite Structures, 2004, 66(1-4):459-466.
[7] Schwarts-Givli H, Rabinovitch O, Frostig Y. High-order nonlinear contact effects in the dynamic behavior of delaminated sandwich panels with a flexible core[J]. International Journal of Solids & Structures, 2007, 44(1):77-99.
[8] 刘述伦, 薛江红, 王璠, 等. 含脱层纤维增强复合材料层合板在湿热环境下的屈曲分析[J]. 工程力学, 2015, 32(3):1-8. Liu Shulun, Xue Jianghong, Wang Fan, et al. Buckling analysis of fiber-reinforced laminated composite plate with delamination under hygrothermal environments[J]. Engineering Mechanics, 2015, 32(3):1-8. (in Chinese)
[9] Xue J H, Jin F S, Zhang J W, et al. Post-buckling induced delamination propagation of composite laminates with bi-nonlinear properties and anti-penetrating interaction effects[J]. Composites Part B:Engineering, 2019, 166:148-161.
[10] Haina F E, Bakora A, Bousahla A A. A simple analytical approach for thermal buckling of thick functionally graded sandwich plates[J]. Structural Engineering and Mechanics, 2017, 63(5):585-595.
[11] 刘人怀, 薛江红. 复合材料层合板壳非线性力学的研究进展[J]. 力学学报, 2017, 49(3):487-506. Liu Renhuai, XueJianghong. Development of nonlinear mechanics for laminated composite plates and shells[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3):487-506. (in Chinese)
[12] 李清禄, 李世荣. 轴向随动分布载荷作用下FGMs Timoshenko梁的后屈曲特性[J]. 应用力学学报, 2015, 32(1):90-94. Li Qinglu, Li Shirong. Post-buckling behaviors of a hinged-fixed FGM Timoshenko beam under axially distributed follower forces[J]. Chinese Journal of Applied Mechanics, 2015, 32(1):90-94. (in Chinese)
[13] 李世荣, 郭锐. 点间隙约束下弹性梁的湿热后屈曲问题[J]. 固体力学学报, 2011, 32(2):197-202. Li Shirong, GuoRui. Hygrothermal post-buckling of elastic beams under point space-constraint[J]. Chinese Journal of Solid Mechanics, 2011, 32(2):197-202. (in Chinese)
[14] 孙先念, 王建立, 刘杨, 等. Z-pins增强层合梁后屈曲分层扩展数值模拟研究[J]. 固体力学学报, 2013, 33(增刊1):270-275. Sun Xiannian, Wang Jianli, Liu Yang, Ren Mingfa. Numerical analysis of delaminated beam throughthickness reinforced by z-pins[J]. Chinese Journal of Solid Mechanics, 2013, 33(Suppl1):270-275. (in Chinese)
[15] 胡博海, 李亚智, 樊振兴, 等. 复合材料梁腹板在弯剪复合载荷作用下的屈曲和后屈曲研究[J]. 机械强度, 2014, 36(6):916-921. Hu Bohai, Li Yazhi, Fan Zhenxing, et al. Buckling and post-buckling of a composite web beam under shearing bending[J]. Journal of Mechanical Strength, 2014, 36(6):916-921. (in Chinese)
[16] Chai H, Babcock C D, Knauss W G. One dimensional modeling of failure in laminated plates by delamination buckling[J]. International Journal of Solids and Structures, 1981, 17(11):1069-1083.
[17] 傅衣铭, 李盈利. 湿热条件下具脱层压电层合梁的后屈曲及脱层扩展分析[J]. 固体力学学报, 2009, 30(3):309-317. Fu Yiming, Li Yingli. Analysis of postbuckling and delamination growth for delaminated piezoelectric laminated beams under hygrothermal conditions[J]. Chinese Journal of Solid Mechanics, 2009, 30(3):309-317. (in Chinese)
[18] Sheinman I, Kardomateas G A, Pelegri A A. Delamination growth during pre-and post-buckling phases of delaminated composite laminates[J]. International Journal of Solids and Structure, 1998, 35(1/2):19-31.
[19] Nisson K F, Asp L E, Alpman J E, et al. Delamination buckling and growth for delaminations at different depths in a slender composite panel[J]. International Journal of Solids and Structure, 2001, 38(4):3039-3071.
[20] Nisson K F, Asp L E. On transition of delamination growth behavior for compression loaded composite panels[J]. International Journal of Solids and Structure, 2001, 38(46/47):8047-8440.
[21] Shen H S. Hygrothermal effects on the postbuckling of axially loaded shear deformable laminated cylindrical panels[J]. Composite Structures, 2002, 56(1):73-85.
[22] Shen H S. Hygrothermal effects on the nonlinear bending of shear deformable laminated plates[J]. Journal of Engineering Mechanics ASCE, 2002, 128(4):493-496.
[23] Shen H S. The effects of hygrothermal conditions on the postbuckling of shear deformable laminated cylindrical shells[J]. International Journal of Solids and Structures, 2001, 38(36/37):6357-6380.
[24] Shen H S. Hygrothermal effects on the postbuckling of shear deformable laminated plates[J]. International Journal of Mechanical Sciences, 2001, 43(5):1259-1281.
[25] Hong C C. GDQ analysis of a beam-plate with delaminations[J]. Composite Structures, 2017, 182:237-241.
[26] Akbaş Ş D. Post-buckling analysis of a fiber reinforced composite beam with crack[J]. Engineering Fracture Mechanics, 2019, 212:70-80.
[27] Akbaş Ş D. Geometrically nonlinear analysis of a laminated composite beam[J]. Structural Engineering and Mechanics, 2018, 66(1):27-36.
[28] 毛丽娟, 马连生. 非均匀热载荷作用下功能梯度梁的非线性静态响应[J]. 工程力学, 2017, 34(6):12-19. Mao Lijuan, Ma Liansheng. Nonlinear static response of FGM beams under non-uniform thermal loading[J]. Engineering Mechanics, 2017, 34(6):12-19. (in Chinese)
[29] 钮鹏, 李旭, 李世荣, 等. 弹性地基上复合材料夹层梁的热过屈曲[J]. 工程力学, 2017, 34(增刊1):39-43. Niu Peng, Li Xu, Li Shirong, et al. The thermal buckling of composite sandwich beams on elastic foundations[J]. Engineering Mechanics, 2017, 34(Suppl 1):39-43. (in Chinese)
[30] Xue J H, Zi L, Yuan H, Liu R H. Contact analysis for fiber reinforced, delaminated laminates with kinematic nonlinearity[J]. Acta Mechanica Solida Sinica, 2013, 26(4):388-402.
[31] Tang M Q, Xue J H, Yuan H, Liu R H. Macro-micro analysis for anti-penetrating postbuckling of fiber reinforce, debonded laminates with contact effects[J]. International Journal of Applied Mechanics, 2014, 6(4):1-24.
[32] Xue J H, Xia F, Ye J, Zhang J W, et al. Multiscale studies on the nonlinear vibration of delaminated composite laminates-global vibration mode with micro buckles on the interfaces[J]. Scientific Reports, 2017, 7(1):44-68.
[1] 何昊南, 于开平. 考虑热对材料参数影响的FGM梁热后屈曲特性研究[J]. 工程力学, 2019, 36(4): 52-61.
[2] 张衡, 王鑫, 陈辉, 黄斌. 基于同伦分析方法的随机结构静力响应求解[J]. 工程力学, 2019, 36(11): 27-33,61.
[3] 樊鹏玄, 陈务军, 赵兵. 盘绕式伸展臂收纳过程理论分析与数值模拟[J]. 工程力学, 2018, 35(3): 249-256.
[4] 杨廷毅, 白雪. 摄动法研究硬盘磁头滑块动态飞行特性[J]. 工程力学, 2018, 35(11): 223-231.
[5] 闫维明, 石鲁宁, 何浩祥, 陈彦江. 带任意附加质量的变截面弹性支承梁动力特性的解析解[J]. 工程力学, 2016, 33(1): 47-57.
[6] 屈展, 王小增, 窦益华, 马文海. 非均匀载荷作用下偏心磨损套管稳定性准则[J]. 工程力学, 2015, 32(7): 249-256.
[7] 邓磊, 王安稳. 冲击载荷作用下夹芯板的后屈曲研究[J]. 工程力学, 2015, 32(6): 171-176,191.
[8] 刘述伦,薛江红,王璠,刘人怀. 含脱层纤维增强复合材料层合板在湿热环境下的屈曲分析[J]. 工程力学, 2015, 32(3): 1-8.
[9] 文颖, 李特, 曾庆元. 柔性梁几何非线性/后屈曲分析的改进势能列式方法研究[J]. 工程力学, 2015, 32(11): 18-26.
[10] 张清东, 卢兴福, 张晓峰. 表观平直带钢裁切加工后翘曲变形行为研究[J]. 工程力学, 2014, 31(增刊): 217-222.
[11] 周算, 强洪夫, 王学仁, 王广, 周志清. 波纹位置对顶部凹陷膜片翻转行为的影响研究[J]. 工程力学, 2014, 31(2): 242-248.
[12] 张清东, 卢兴福, 张晓峰. 正交各向异性带钢瓢曲变形行为样条有限元研究[J]. 工程力学, 2014, 31(10): 222-227,256.
[13] 李秀梅,吴锋,张克实. 结构动力微分方程的一种高精度摄动解[J]. 工程力学, 2013, 30(5): 8-12.
[14] 强洪夫,周算,王学仁,王广. 锥角对锥柱形贮箱金属膜片翻转行为的影响[J]. 工程力学, 2013, 30(4): 435-441.
[15] 张文志, 富明慧, 林敬华. 层合梁脱层分析的精细解法[J]. 工程力学, 2012, 29(7): 35-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 向天宇;童育强;赵人达. 基于退化梁单元的混凝土结构徐变分析[J]. 工程力学, 2006, 23(4): 140 -143 .
[2] 陈贵敏;贾建援;刘小院;勾燕洁. 椭圆柔性铰链的计算与分析[J]. 工程力学, 2006, 23(5): 152 -156 .
[3] 付宇明;田振国;郑丽娟;. 轴对称金属模具电磁热裂纹止裂温度场的分析[J]. 工程力学, 2006, 23(7): 180 -184, .
[4] 闫东明;林皋. 双向应力状态下混凝土的动态压缩试验研究[J]. 工程力学, 2006, 23(9): 104 -108 .
[5] 杨智春;王 乐;丁 燕;党晓娟. 基于内积向量的复合材料结构损伤检测[J]. 工程力学, 2009, 26(9): 191 -196 .
[6] 鲁成林;张修银;吴艳玲;张东升;. 全瓷冠触压破坏的实验研究[J]. 工程力学, 2009, 26(12): 246 -248, .
[7] 陈伟球;严 蔚. 混凝土结构服役智能化的若干研究进展[J]. 工程力学, 2009, 26(增刊Ⅱ): 91 -105 .
[8] 吴建营;李 杰. 混凝土各向异性损伤模型的数学和热力学表述[J]. 工程力学, 2009, 26(增刊Ⅱ): 133 -147 .
[9] 陈朝晖;郑小宇. 低层民居台风可靠度分析初探[J]. 工程力学, 2009, 26(增刊Ⅱ): 230 -234, .
[10] 骆少泽;张陆陈;樊宝康. 超大型弧门流激振动试验研究[J]. 工程力学, 2009, 26(增刊Ⅱ): 241 -244 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日