工程力学 ›› 2019, Vol. 36 ›› Issue (6): 101-108.doi: 10.6052/j.issn.1000-4750.2018.04.0229

• 土木工程学科 • 上一篇    下一篇

基于多链差分进化的贝叶斯有限元模型修正方法

蒋伟1, 刘纲1,2   

  1. 1. 重庆大学土木工程学院, 重庆 400045;
    2. 重庆大学, 山地城镇建设与新技术教育部重点实验室, 重庆 400030
  • 收稿日期:2018-04-10 修回日期:2019-03-24 出版日期:2019-06-25 发布日期:2019-05-31
  • 通讯作者: 刘纲(1977-),男,四川人,教授,博士,博导,从事结构健康监测与振动控制研究(E-mail:gliu@cqu.edu.cn). E-mail:gliu@cqu.edu.cn
  • 作者简介:蒋伟(1991-),男,湖南人,博士生,从事结构健康监测研究(E-mail:295771695@qq.com).
  • 基金资助:
    国家自然科学基金项目(51578095);国家重点研发计划项目(2018YFC0705604)

BAYESIAN FINITE ELEMENT MODEL UPDATING METHOD BASED ON MULTI-CHAIN DIFFERENTIAL EVOLUTION

JIANG Wei1, LIU Gang1,2   

  1. 1. School of Civil Engineering, Chongqing University, Chongqing 400045, China;
    2. The Key Laboratory of New Technology for Construction of Cities in Mountain Area of the Ministry of Education, Chongqing 400030, China
  • Received:2018-04-10 Revised:2019-03-24 Online:2019-06-25 Published:2019-05-31

摘要: 针对传统贝叶斯算法在高维参数下采样效率低且收敛难的问题,建立了基于多链差分进化算法的贝叶斯有限元模型修正方法。在标准马尔可夫链蒙特卡罗(MCMC)方法的基础上,引入差分进化算法,通过多条马氏链间的随机差分运算来自适应选择条件分布的大小和方向以快速逼近目标分布;引入子空间采样算法,通过自适应选择优良的参数维度进行采样以提高采样效率;引入异常链检测算法,通过在采样的非平稳期对马氏链进行异常检测与剔除以提高在平稳期的采样效率。简支梁理论模型和实验室4层框架结构的模型修正结果表明:该方法修正精度较高,且具有良好的抗噪性,在高阶频率以及振型下的修正效果均优于DRAM算法,为解决不确定性模型修正中的计算精度提供了一种新手段。

关键词: 有限元模型修正, 贝叶斯估计, MCMC, 差分进化算法, 子空间采样

Abstract: To cope with the shortages of low sampling efficiency and difficult convergence of traditional Bayesian method under high-dimension parameters, a Bayesian based finite element model is proposed by the base of a multi-chain differential evolution algorithm. Based on the standard Markov chain Monte Carlo (MCMC) method, a differential evolution algorithm is introduced, and a random difference operation among multiple Markov chains is derived from the size and direction of an adaptive selection condition distribution to quickly approximate the target distribution. A subspace sampling algorithm which uses adaptive selection to select good parameter dimensions for sampling is introduced to improve sampling efficiency. Also, an anomaly Markov chain detection algorithm which detects and eliminates abnormities in Markov chains in the non-stationary period is introduced to improve the sampling efficiency in the stationary phase. The correction results of a simply-supported-beam model and a four-floor-frame-structure model show that the proposed method has a higher correction accuracy, better noise resistance, and better correction effects than that of DRAM algorithm under high order frequency and mode shapes, which provides a new way to improve the computational accuracy in uncertainty model correction.

Key words: finite element model updating, Bayesian estimation, MCMC, differential evolution algorithm, subspace sampling

中图分类号: 

  • TU311
[1] Mosavi A A, Sedarat H, O'Connor S M, et al. Calibrating a high-fidelity finite element model of a highway bridge using a multi-variable sensitivity-based optimization approach[J]. Structure and Infrastructure Engineering, 2014, 10(5):627-642.
[2] Collins J D, Hart G C, Hasselman T K, et al. Statistical identification of structures[J]. AIAA Journal, 1974, 12(2):185-190.
[3] Jiang C, Han X, Liu G R. Optimization of structures with uncertain constraints based on convex model and satisfaction degree of interval[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(49):4791-4800.
[4] Hanss M. Applied fuzzy arithmetic[M]. Berlin Heidelberg:Springer-Verlag, 2005:128.
[5] Beck J L, Katafygiotis L S. Updating models and their uncertainties I:Bayesian statistical framework[J]. Journal of Engineering Mechanics, 1998, 124(4):455-461.
[6] Katafygiotis L S, Beck J L. Updating models and their uncertainties Ⅱ:Model identify ability[J]. Journal of Engineering Mechanics, 1998, 124(4):463-467.
[7] Beck J L, Au S K. Bayesian updating of structural models and reliability using Markov chain Monte Carlo simulation[J]. Journal of Engineering Mechanics-ASCE, 2002, 128(4):380-391.
[8] 易伟建, 周云, 李浩,等. 基于贝叶斯统计推断的框架结构损伤诊断研究[J]. 工程力学, 2009, 26(5):121-129. Yi Weijian, Zhou Yun, Li Hao, et al. Damage assessment research on frame structure based on Bayesian statistical inference[J]. Engineering Mechanics, 2009, 26(5):121-129. (in Chinese)
[9] 房长宇, 张耀庭. 基于参数不确定性的预应力混凝土梁模型修正[J]. 华中科技大学学报(自然科学版), 2011, 39(11):87-91. Fang Changyu, Zhang Yaoting. Model updating of prestressed concrete beams using parameters uncertainty[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2011, 39(11):87-91. (in Chinese)
[10] 韩芳, 钟冬望, 汪君. 基于贝叶斯法的复杂有限元模型修正研究[J]. 振动与冲击, 2012, 31(1):39-43. Han Fang, Zhong Dongwang, Wang Jun. Complicated finite element model updating based on Bayesian method[J]. Journal of Vibration and Shock, 2012, 31(1):39-43. (in Chinese)
[11] Ching J Y, Chen Y C. Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging[J]. Journal of Engineering Mechanics, 2007, 133(7):816-832.
[12] Cheung S H, Beck J L. Bayesian model updating using hybrid Monte Carlo simulation with application to structural dynamic models with many uncertain parameters[J]. Journal of Engineering Mechanics, 2009, 135(4):243-255.
[13] 刘纲, 罗钧, 秦阳, 等. 基于改进MCMC方法的有限元模型修正研究[J]. 工程力学, 2016, 33(6):138-145. Liu Gang, Luo Jun, Qin Yang, et al. A finite element model updating method based on improved MCMC method[J]. Engineering Mechanics, 2016, 33(6):138-145. (in Chinese)
[14] Wang F S, Li X C, Lu M Y. Adaptive Hamiltonian MCMC sampling for robust visual tracking[J]. Multimedia Tools and Applications, 2017, 76(11):13087-13106.
[15] Agostinho N B, Machado K S, Werhli A V. Inference of regulatory networks with a convergence improved MCMC sampler[J]. BMC Bioinformatics, 2015, 306(16):1-10.
[16] Kennedy D A, Dukic V, Dwyer G. Combining principal component analysis with parameter line-searches to improve the efficacy of Metropolis-Hastings MCMC[J]. Environmental and Ecological Statistics, 2015, 22(2):247-274.
[17] Mengersen K L, Robert C P. ⅡD sampling using self-avoiding population Monte Carlo:The pinball sampler[J]. Bayesian Statistics, 2003, 7:277-292.
[18] 茆诗松, 程依明, 濮晓龙, 等. 概率论与数理统计教程[M]. 北京:高等教育出版社, 2011:107-108. Mao Shisong, Chen Yiming, Pu Xiaolong, et al. Probability and statistics[M]. Beijing:Higher Education Press, 2011:107-108. (in Chinese)
[19] Gelman A, Rubin D B. Inference from iterative simulation using multiple sequences[J]. Statistical Science, 1992, 7(4):457-472.
[20] Vrugt J A, ter Braak C J F, Diks C G H, et al. Accelerating markov chain monte carlo simulation by differential evolution with self-adaptive randomized subspace sampling[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2009, 10(3):273-290.
[21] Kim G H, Park Y S. An improved updating parameter selection method and finite element model update using multiobjective optimisation technique[J]. Mechanical Systems and Signal Processing, 2014, 18(1):59-78.
[1] 张欢, 周广东, 吴二军. 考虑参数更新的大跨桥梁温差极值分布估计方法研究[J]. 工程力学, 2017, 34(3): 124-130.
[2] 刘纲, 罗钧, 秦阳, 张建新. 基于改进MCMC方法的有限元模型修正研究[J]. 工程力学, 2016, 33(6): 138-145.
[3] 蒋运忠, 周云, 谢利民. 基于应用程序交互访问技术的桥梁有限元模型修正研究[J]. 工程力学, 2015, 32(9): 174-182.
[4] 韩建平,骆勇鹏,郑沛娟,刘云帅. 基于响应面的刚构-连续组合梁桥有限元模型修正[J]. 工程力学, 2013, 30(12): 85-90,106.
[5] 李小华;公茂盛;谢礼立. 基于多分辨率分析的结构物理参数识别贝叶斯估计方法:方法推导与验证[J]. 工程力学, 2011, 28(1): 12-018.
[6] 易伟建;周 云;李 浩. 基于贝叶斯统计推断的框架结构损伤诊断研究[J]. 工程力学, 2009, 26(5): 121-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日