工程力学 ›› 2019, Vol. 36 ›› Issue (5): 184-191.doi: 10.6052/j.issn.1000-4750.2018.04.0227

• 土木工程学科 • 上一篇    下一篇

连续排水边界条件下考虑自重的地基一维固结分析

冯健雪1,2,3, 陈征4, 李勇义1,2,3,5, 梅国雄1,2,3   

  1. 1. 工程防灾与结构安全教育部重点实验室, 广西, 南宁 530004;
    2. 广西防灾减灾与工程安全重点实验室, 广西, 南宁 530004;
    3. 广西大学土木工程学院, 广西, 南宁 530004;
    4. 武汉大学水工岩石力学教育部重点实验室, 湖北, 武汉 430072;
    5. 中交第二公路勘察设计研究院有限公司, 湖北, 武汉 430056
  • 收稿日期:2018-04-10 修回日期:2018-10-25 出版日期:2019-05-25 发布日期:2019-04-03
  • 通讯作者: 梅国雄(1975-),男,湖北人,教授,博士,博导,主要从事固结理论和土体基本性质等研究(E-mail:meiguox@163.com). E-mail:meiguox@163.com
  • 作者简介:冯健雪(1985-),男,贵州人,博士生,主要从事软土地基固结理论方面的研究(E-mail:fengjianxue@mail.gxu.cn);陈征(1989-),男,江苏人,博士生,主要从事软土地基固结理论方面的研究(E-mail:1946562738@qq.com);李勇义(1990-),男,湖北人,硕士生,主要从事软土地基固结理论方面的研究(E-mail:liyonyi2013@163.com).
  • 基金资助:
    国家自然科学基金项目(51578164,41672296);广西自然科学基金创新研究团队项目(2016GXNSFGA380008)

STUDY ON ONE-DIMENSIONAL CONSOLIDATION CONSIDERING SELF-WEIGHT UNDER CONTINUOUS DRAINAGE BOUNDARY CONDITIONS

FENG Jian-xue1,2,3, CHEN Zheng4, LI Yong-yi1,2,3,5, MEI Guo-xiong1,2,3   

  1. 1. Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Nanning, Guangxi 530004, China;
    2. Guangxi Key Laboratory of Disaster Prevention and Structural Safety, Nanning, Guangxi 530004, China;
    3. College of Civil Engineering and Architecture, Guangxi University, Nanning, Guangxi 530004, China;
    4. Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering(Wuhan University), Ministry of Education, Wuhan, Hubei 430072, China;
    5. CCCC Second Highway Consultants Co. Ltd., Wuhan, Hubei 430056, China
  • Received:2018-04-10 Revised:2018-10-25 Online:2019-05-25 Published:2019-04-03

摘要: 基于连续排水边界条件,建立考虑自重的地基一维固结方程,利用有限正弦Fourier变换方法,给出了解析解,然后通过数值方法获得不排水对称面,分析了界面参数和自重系数对不排水对称面的影响。针对实际工程中水平排水砂垫层铺设位置的优化问题,通过建立考虑土体自重下的固结数学模型,运用半数值半解析方法获得了土体在不同时间因数下设置排水砂垫层的最优位置。分析了水平排水砂垫层设置位置对地基固结度的影响,并进一步给出不同土体界面参数下砂垫层最优铺设位置与时间的关系图。结果表明:考虑土体自重的不排水对称面随时间变化,自重系数越大,不排水对称面越靠近土体底部;最优砂垫层铺设位置是随时间不断变化的。最后,通过一个算例表明考虑优化砂垫层对于固结时间效率的提高具有明显效果。

关键词: 连续排水边界, 界面参数, 自重, 解析解, 不排水对称面, 砂垫层优化

Abstract: Based on continuous drainage boundary conditions, the one-dimensional consolidation equation considering self-weight is established. Using the Finite Sine Fourier transform method, the analytical solution is proposed, and the undrained symmetric plane is presented by the numerical method. The influence of the interface parameter and gravity coefficient on the undrained symmetric plane is discussed. Aiming at the optimization problem of horizontal drain in engineering practice, the consolidation equation considering self-weight is established, and the optimal position of the sand blanket under different time factors is proposed by the semi-analytic method. The influence of the sand blanket position on the consolidation degree is investigated, and the relationship chart of the position and time of the optimum sand blanket under different soil interface parameters is further given. The results show that the undrained plane considering self-weight varies with time. The larger the weight coefficient is, the closer to the bottom soil is the undrained plane of symmetry. The optimal placement of sand blanket also varies with time. An engineering example is provided to show that the optimization of drainage sand blanket has obvious effect on the improvement of consolidation time efficiency.

Key words: continuous drainage boundary, interface parameters, self-weight, analytic solution, the undrained symmetry plane, optimization of sand blanket

中图分类号: 

  • TU43
[1] Terzaghi K. Erdbaumechanik auf bodenphysikalischer grundlage[M]. Wien:Fanz Deuticke, 1925.
[2] Mikasa M. The consolidation of soft clay-a new consolidation theory and its application[J]. Equations, 1965, 1(1):21-26.
[3] Gibson R E, Schiffman R L, Cargill K W. The theory of one-dimensional consolidation of saturated clays. Ⅱ. Finite nonlinear consolidation of thick homogeneous layers[J]. Canadian Geotechnical Journal, 1981, 18(2):280-293.
[4] 窦宜, 蔡正银, 盛树馨. 自重应力作用下饱和粘土的固结变形特性[J]. 岩土工程学报, 1992, 14(6):29-37. Dou Yi, Cai Zhengyin, Sheng Shuxin. Consolidation characteristics of saturated clays under self-weight stress[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(6):29-37. (in Chinese)
[5] Mesri G, Choi Y K. Settlement analysis of embankments on soft clays[J]. Journal of Geotechnical Engineering, 1985, 111(4):441-464.
[6] 纠永志, 刘忠玉, 乐金朝, 等. 考虑非Darcy渗流和自重应力的一维固结分析[J]. 同济大学学报(自然科学版), 2012, 40(4):541-548. Jiu Yongzhi, Liu Zhongyu, Yue Jinchao, et al. One-dimensional consolidation with a consideration of non-Darcy flow and self-gravity stress[J]. Journal of Tongji University (Natural Science), 2012, 40(4):541-548. (in Chinese)
[7] 胡安峰, 黄杰卿, 谢新宇, 等. 考虑自重影响的饱和土体一维复杂非线性固结研究[J]. 浙江大学学报(工学版), 2012, 46(3):441-447.Hu Anfeng, Huang Jieqing, Xie Xinyu, et al. Study on properties of one-dimensional complex nonlinear consolidation considering self-weight of saturated soils[J]. Journal of Zhejiang University (Natural Science), 2012, 46(3):441-447. (in Chinese)
[8] 马崇武, 刘忠玉. 考虑饱和黏土埋深影响的一维非线性固结[J]. 岩石力学与工程学报, 2007, 26(增刊2):4372-4377. Ma Chongwu, Liu Zhongyu. One-dimensional nonlinear consolidation considering buried depth of saturated clay layer[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(Suppl 2):4372-4377. (in Chinese)
[9] 李冰河, 谢康和, 应宏伟, 等. 初始有效应力沿深度变化的非线性一维固结半解析解[J]. 土木工程学报, 1999, 32(6):47-52. Li Binghe, Xie Kanghe, Ying Hongwei, et al. Semi-analytical solution of 1-D nonlinear considering the initial effective stress distribution[J]. China Civil Engineering Journal, 1999, 32(6):47-52. (in Chinese)
[10] Chen R P, Zhou W H, Wang H Z, et al. One-dimensional nonlinear consolidation of multi-layered soil by differential quadrature method[J]. Computers & Geotechnics, 2005, 32(5):358-369.
[11] Gray H. Simultaneous consolidation of contiguous layers of unlike compressive soils[J]. American Society of Civil Engineers, 1945, 110(1):1327-1356.
[12] 梅国雄, 夏君, 梅岭. 基于不对称连续排水边界的太沙基一维固结方程及其解答[J]. 岩土工程学报, 2011, 33(1):28-31. Mei Guoxiong, Xia Jun, Mei Ling. Terzaghi's one-dimensional consolidation equation and its solution based on asymmetric continuous drainage boundary[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1):28-31. (in Chinese)
[13] Mei G X, Chen Q M. Solution of Terzaghi one-dimensional consolidation equation with general boundary conditions[J]. Journal of Central South University (Science and Technology), 2013, 20(8):2239-2244.
[14] 何利军, 吴立松, 张涛, 等. 基于连续边界条件的土层厚度随时间变化的平均固结度研究[J]. 工程力学, 2016, 33(S1):11-17. He Lijun, Wu Lisong, Zhang Tao, et al. The average degree of consolidation of soil layer thickness changing with time based on continuous drainage[J]. Engineering Mechanics, 2016, 33(S1):11-17. (in Chinese)
[15] Liu J C, Lei G H. One-dimensional consolidation of layered soils with exponentially time-growing drainage boundaries[J]. Computers & Geotechnics, 2013, 54(10):202-209.
[16] Wu W, Zong M, El Naggar M H, et al. Analytical solution for one-dimensional consolidation of double-layered soil with exponentially time-growing drainage boundary[J]. International Journal of Distributed Sensor Networks, 2018, 14(10):1-11.
[17] 蔡烽, 何利军, 张青青, 等. 考虑土体自重的不排水对称面有限元分析[J]. 浙江大学学报(工学版), 2013, 47(12):2132-2140. Cai Feng, He Lijun, Zhang Qingqing, et al. Finite element analysis of undrained symmetry plane with self-weight[J]. Journal of Zhejiang University (Natural Science), 2013, 47(12):2132-2140. (in Chinese)
[18] 蔡烽, 何利军, 周小鹏, 等. 连续排水边界下一维固结不排水对称面的有限元分析[J]. 岩土工程学报, 2012, 34(11):2141-2147. Cai Feng, He Lijun, Zhou Xiaopeng, et al. Finite element analysis of one-dimensional consolidation of undrained symmetric plane under continuous drainage boundary[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11):2141-2147. (in Chinese)
[19] 黄文熙. 土的工程性质[M]. 北京:水利电力出版社, 1983. Huang Wenxi. Engineering properties of soil[M]. Beijing:Hydraulic and Hydroelectricity Press, 1983. (in Chinese)
[20] Tan S A, Liang K M, Yong K Y, et al. Drainage efficiency of sand layer in layered clay-sand reclamation[J]. Journal of Geotechnical Engineering, 1992, 118(2):209-228.
[21] Nogami T, Li M. Consolidation of system of clay and thin sand layers[J]. Soils & Foundations, 2002, 42(4):1-11.
[22] Rujikiatkamjorn C, Indraratna B. Analytical solutions and design curves for vacuum-assisted consolidation with both vertical and horizontal drainage[J]. Canadian Geotechnical Journal, 2007, 44(2):188-200.
[23] Fukuda M, Ito Y, Suwa S, et al. Presentation of two layers horizontal drain model and design method for reduction of consolidation delay,[J]. Jioshinsetikkusu Rombunshu/Geosynthetics Engineering Journal, 2011, 26:13-18.
[24] Walker R, Indraratna B. Consolidation analysis of a stratified soil with vertical and horizontal drainage using the spectral method[J]. Geotechnique, 2009, 59(5):439-449.
[25] Chai J, Horpibulsuk S, Shen S, et al. Consolidation analysis of clayey deposits under vacuum pressure with horizontal drains[J]. Geotextiles and Geomembranes, 2014, 42(5):437-444.
[1] 何昊南, 于开平. 考虑热对材料参数影响的FGM梁热后屈曲特性研究[J]. 工程力学, 2019, 36(4): 52-61.
[2] 李勇义, 冯健雪, 梅国雄. 连续排水边界下梯形循环荷载作用的一维固结解析解[J]. 工程力学, 2019, 36(2): 134-140.
[3] 张雷, 杨娜. 均布荷载作用下榫卯连接木梁的解析解[J]. 工程力学, 2017, 34(7): 51-60,78.
[4] 王怀忠. 轴向冲击作用下空心钢管混凝土桩应力波解析解[J]. 工程力学, 2017, 34(4): 101-107.
[5] 张爱林, 孙超, 姜子钦. 联方型双撑杆索穹顶考虑自重的预应力计算方法[J]. 工程力学, 2017, 34(3): 211-218.
[6] 杨骁, 方晓雯, 汪德江. SH波作用下液化土中桩-土-结构的动力相互作用[J]. 工程力学, 2017, 34(1): 101-108.
[7] 周晓敏, 管华栋. 磁西矿千米深井不均匀原岩应力场有限元模型研究[J]. 工程力学, 2016, 33(增刊): 306-311.
[8] 何利军, 吴立松, 张涛, 梅国雄. 基于连续边界条件的土层厚度随时间变化的平均固结度研究[J]. 工程力学, 2016, 33(增刊): 11-17.
[9] 范栋浩, 杜咏, 盛红梅. 高温下张弦梁结构力学特征解析解[J]. 工程力学, 2016, 33(4): 195-204.
[10] 王华宁, 曾广尚, 蒋明镜. 黏弹-塑性岩体中锚注与衬砌联合支护的解析解[J]. 工程力学, 2016, 33(4): 176-187.
[11] 洪兆徽, 刘润, 刘文彬, 闫澍旺. 双拱缺陷管线整体屈曲的解析解研究[J]. 工程力学, 2016, 33(3): 31-38.
[12] 张大峰, 杨军, 李连友, 沈兆普. 考虑膨胀土地基膨胀率和刚度沿深度变化的桩-土共同作用解析解[J]. 工程力学, 2016, 33(12): 86-93.
[13] 闫维明, 石鲁宁, 何浩祥, 陈彦江. 带任意附加质量的变截面弹性支承梁动力特性的解析解[J]. 工程力学, 2016, 33(1): 47-57.
[14] 孟强, 赵洪波, 茹忠亮, 李东利. 锚杆支护圆形隧洞弹塑性解[J]. 工程力学, 2015, 32(7): 17-25.
[15] 黄川腾, 王志军, 邓然, 朱兰影. 考虑剪切变形的箱型空心楼盖拟板法研究[J]. 工程力学, 2015, 32(12): 198-207.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程麦理. 黄土场地桩基横向力学行为数值模拟[J]. 工程力学, 0, (): 0 .
[2] 张建春, 张大山, 董毓利, 王卫华. 火灾下钢-混凝土组合梁内力变化的试验研究 [J]. 工程力学, 0, (): 0 .
[3] 柯晓军, 苏益声, 商效瑀, 孙海洋. 钢管混凝土组合柱压弯性能试验及承载力计算[J]. 工程力学, 2018, 35(12): 134 -142 .
[4] 张凌凯, 王睿, 张建民, 唐新军. 不同应力路径下堆石料的动力变形特性试验研究[J]. 工程力学, 2019, 36(3): 114 -120,130 .
[5] 冯健雪, 陈征, 李勇义, 梅国雄, . 连续排水边界条件下线性加载地基一维固结解析解 [J]. 工程力学, 0, (): 0 .
[6] 卜一之, 金 通, 李 俊, 张清华. 纵肋与横隔板交叉构造细节穿透型疲劳裂纹扩展特性及其加固方法研究 [J]. 工程力学, 0, (): 0 .
[7] 钱海峰 赵婧同 王元清 王登峰. 考虑除尘器箱体墙板-立柱协同受力时立柱在横向荷载作用下的内力计算[J]. 工程力学, 0, (): 0 .
[8] 王景全, 王震, 高玉峰, 诸钧政. 预制桥墩体系抗震性能研究进展:新材料、新理念、新应用[J]. 工程力学, 2019, 36(3): 1 -23 .
[9] 李天娥, 孙晓颖, 武岳, 王长国. 软式平流层飞艇气弹模型相似参数分析[J]. 工程力学, 2019, 36(3): 240 -246,256 .
[10] 蒋庆, 王瀚钦, 冯玉龙, 种迅. 损伤可控的含减震外挂墙板RC 框架结构抗震性能分析[J]. 工程力学, 0, (): 0 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日