工程力学 ›› 2019, Vol. 36 ›› Issue (9): 60-67,88.doi: 10.6052/j.issn.1000-4750.2018.04.0225

• 土木工程学科 • 上一篇    下一篇

摩擦摆支座在地下地铁车站结构中的减震效果研究

杜修力, 许紫刚, 许成顺, 蒋家卫   

  1. 北京工业大学城市与工程安全减灾教育部重点实验室, 北京 100124
  • 收稿日期:2018-04-10 修回日期:2018-09-06 出版日期:2019-09-25 发布日期:2019-02-22
  • 通讯作者: 杜修力(1962-),男,四川广安人,教授,博士,主要从事地震工程学研究(E-mail:duxiuli@bjut.edu.cn). E-mail:duxiuli@bjut.edu.cn
  • 作者简介:许紫刚(1992-),男,江西南昌人,博士生,主要从事城市地下结构抗震性能研究(E-mail:xzg@emails.bjut.edu.cn);许成顺(1977-),女,黑龙江海林人,教授,博士,主要从事土动力学与岩土地震工程研究(E-mail:xuchengshun@bjut.edu.cn);蒋家卫(1992-),男,江西上饶人,博士生,主要从事城市地下结构抗震性能研究(E-mail:714811459@qq.com).
  • 基金资助:
    国家重点研发计划项目(2018YFC1504305);国家自然科学基金创新研究群体项目(51421005);教育部"创新团队发展计划"项目(IRT13044)

SEISMIC MITIGATION EFFECT ANALYSIS ON FRICTION PENDULUM BEARINGAPPLIED IN THE UNDERGROUND SUBWAY STATION

DU Xiu-li, XU Zi-gang, XU Cheng-shun, JIANG Jia-wei   

  1. Key Laboratory of Urban Security and Disaster Engineering of the Ministry of Education, Beijing University of Technology, Beijing 100124, China
  • Received:2018-04-10 Revised:2018-09-06 Online:2019-09-25 Published:2019-02-22

摘要: 基于阪神地震中大开地铁车站的破坏模式与成灾机理,借鉴地面建筑结构的减隔震设计理念,提出在地铁车站中柱顶部设置摩擦摆支座形成新型减震结构体系。通过建立土-地下结构整体二维数值分析模型,运用整体动力时程分析方法对比研究了摩擦摆支座不同滑道半径和不同摩擦系数工况下减震结构与原型结构在结构变形和截面内力等动力响应的差异。结果表明:柱端设置摩擦摆支座使得结构整体抗侧刚度减小,结构的水平变形呈现小幅增大趋势。当摩擦摆支座的滑道半径越大、摩擦系数越小时,中柱变形、剪力和弯矩值较原型结构均有大幅的减小。

关键词: 地铁车站, 中柱, 摩擦摆支座, 滑动半径, 滑动面摩擦系数

Abstract: Based on the failure mode and damage mechanism of the Daikai subway station during Kobe earthquake, this paper proposes a new seismic mitigation structure. The friction pendulum bearing is installed at the top of the central columns, using the seismic isolation and mitigation design concept of surface structures. The 2D finite element models of soil-structure are analyzed, and then the seismic response of the original and proposed structure in different slide way radius and friction coefficient are compared by dynamic time history analysis method. The comparison results show that the new structure with friction pendulum bearing is softer than the original structure, resulting in a larger relative horizontal deformation. The deformation, shear forces and moments of the central columns are significantly reduced, when the slide way radius is large and the friction coefficient is small.

Key words: subway station, central column, friction pendulum system, slide-way radius, friction coefficient

中图分类号: 

  • TU352.12
[1] 刘晶波, 李彬. 地铁地下结构抗震分析及设计中的几个关键问题[J]. 土木工程学报, 2006, 39(6):106-110. Liu Jingbo, Li Bin. Issues on the seismic analysis and design of subway structures[J]. China Civil Engineering Journal, 2006, 39(6):106-110. (in Chinese)
[2] Nakamura S, Yoshida N, Iwatate T. Damage to Daikai subway station during the 1995 Hyogoken-Nambu earthquake and its investigation[J]. Japan Society of Civil Engineers, Committee of Earthquake Engineering, 1996:287-295.
[3] 陈国兴, 陈苏, 杜修力, 等. 城市地下结构抗震研究进展[J]. 防灾减灾工程学报, 2016, 36(1):1-23. Chen Guoxing, Chen Su, Du Xiuli, et al. Review of seismic damage, model test, available design and analysis methods of urban underground structures:Retrospect and prospect[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(1):1-23. (in Chinese)
[4] 杜修力, 马超, 路德春, 等. 大开地铁车站地震破坏模拟与机理分析[J]. 土木工程学报, 2017, 50(1):53-62. Du Xiuli, Ma Chao, Lu Dechun, et al. Collapse simulation and failure mechanism analysis of the Daikai station under seismic loads[J]. China Civil Engineering Journal, 2017, 50(1):53-62. (in Chinese)
[5] 杜修力, 许紫刚, 许成顺, 等. 浅埋地下结构地震反应分析的惯性力-位移法[J]. 岩土工程学报, 2018, 40(4):583-591. Du Xiuli, Xu Zigang, Xu Chengshun, et al. Inertia force-displacement method for seismic analysis of shallow buried underground structure[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4):583-591. (in Chinese)
[6] Zayas V A, Low S S, Mahin S A. A simple pendulum technique for achieving seismic isolation[J]. Earthquake Spectra, 1990, 6(2):317-333.
[7] Mokha A, Constantinou M, Reinhorn A. Teflon bearings in base isolation I:Testing[J]. Journal of Structural Engineering, 1990, 116(2):438-454.
[8] Constantinou M, Mokha A, Reinhorn A. Teflon bearings in base isolation Ⅱ:Modeling[J]. Journal of Structural Engineering, 1990, 116(2):455-474.
[9] Dicleli M, Mansour M Y. Seismic retrofitting of highway bridges in Illinois using friction pendulum seismic isolation bearings and modeling procedures[J]. Engineering Structures, 2003, 25(9):1139-1156.
[10] Shrimali M K, Jangid R S. Earthquake response of isolated elevated liquid storage steel tanks[J]. Journal of Constructional Steel Research, 2003, 59(10):1267-1288.
[11] Zhao W S, Chen W Z, Tan X J, et al. Study on foamed concrete used as seismic isolation material for tunnels in rock[J]. Materials Research Innovations, 2013, 17(7):465-472.
[12] Zhao W S, Chen W Z, Yang D S, et al. Interaction between strengthening and isolation layers for tunnels in rock subjected to SH waves[J]. Tunnelling and Underground Space Technology, 2018, 79:121-133.
[13] Wang Z Z, Jiang Y J, Zhu C A. Seismic energy response and damage evolution of tunnel lining structures[J]. European Journal of Environmental & Civil Engineering, 2017:1-13.
[14] Chen Z Y, Liang S B, Shen H, et al. Dynamic centrifuge tests on effects of isolation layer and cross-section dimensions on shield tunnels[J]. Soil Dynamics and Earthquake Engineering, 2018, 109:173-187.
[15] Chen Z Y, Chen W, Bian G Q. Seismic performance upgrading for underground structures by introducing shear panel dampers[J]. Advances in Structural Engineering, 2014, 17(9):1343-1357.
[16] Chen Z Y, Zhao H, Lou M L. Seismic performance and optimal design of framed underground structures with lead-rubber bearings[J]. Structural Engineering and Mechanics, 2016, 58(2):259-276.
[17] 陶连金, 安军海, 葛楠. 地铁车站工程应用双向RFPS支座隔震效果研究[J]. 地震工程与工程振动, 2016, 36(1):52-58. Tao Lianjin, An Junhai, Ge Nan. Isolation effect analysis on bidirectional RFPS bearing applied in the metro stations engineering[J]. Journal of Earthquake Engineering and Engineering Vibration, 2016, 36(1):52-58. (in Chinese)
[18] Ma C, Lu D, Du X. Seismic performance upgrading for underground structures by introducing sliding isolation bearings[J]. Tunnelling and Underground Space Technology, 2018, 74:1-9.
[19] Bardet J P, Ichii K, Lin C H. EERA:A computer program for equivalent-linear earthquake site response analysis of layered soil deposits User's Manual[R]. Los Angeles:University of Southern California, 2000.
[20] 杜修力, 李洋, 赵密, 等. 下卧刚性基岩条件下场地土-结构体系地震反应分析方法研究[J]. 工程力学, 2017, 34(5):52-59. Du Xiuli, Li Yang, Zhao Mi, et al. Seismic response analysis method for soil-structure interaction system of underlying rigid rock base soil condition[J]. Engineering Mechanics, 2017, 34(5):52-59. (in Chinese)
[21] 谭辉, 刘晶波, 王东洋, 等. 地下结构地震反应分析中人工边界条件和地震波动输入方法对比研究[J]. 工程力学, 2018(s1):212-216, 222. Tan Hui, Liu Jingbo, Wang Dongyang, et al. Comparison on artificial boundaries and seismic wave input methods in seismic analysis of underground structures[J]. Engineering Mechanics, 2018(s1):212-216, 222. (in Chinese)
[22] 杜修力, 许紫刚, 许成顺, 等. 基于等效线性化的土-地下结构整体动力时程分析方法研究[J]. 岩土工程学报, 2018, 40(12):2155-2163. Du Xiuli, Xu Zigang, Xu Chengshun, et al. Research on time history analysis method of soil-underground structure system based on equivalent linear method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12):2155-2163.
[23] Tsinidis G. Response characteristics of rectangular tunnels in soft soil subjected to transversal ground shaking[J]. Tunnelling and Underground Space Technology, 2017, 62:1-22.
[1] 赵文, 贾鹏蛟, 王连广, 关永平, 李慎刚, 赵朕. 地铁车站STS新管幕构件抗弯承载力试验研究[J]. 工程力学, 2016, 33(8): 167-176.
[2] 夏修身, 崔靓波, 陈兴冲. 超长联大跨连续梁桥摩擦摆支座隔震研究[J]. 工程力学, 2015, 32(增刊): 167-171.
[3] 王万祯, 王伟焘, 谢光杰. 隔板贯通式箱型柱-H型钢梁节点循环加载试验和破坏机理分析[J]. 工程力学, 2015, 32(4): 93-102.
[4] 曲树盛,李忠献. 地铁车站内爆炸引起的地面震动分析[J]. 工程力学, 2013, 30(2): 226-231,239.
[5] 闫秋实;刘晶波;伍俊. 典型地铁车站内爆炸致人员伤亡区域的预测研究[J]. 工程力学, 2012, 29(2): 81-88.
[6] 李 围;何 川;陈晓婷. 配合盾构法建成三连拱地铁车站模型试验研究[J]. 工程力学, 2010, 27(增刊Ⅱ): 245-248.
[7] 曲树盛;李忠献;. 地铁车站内爆炸波的传播规律与超压荷载[J]. 工程力学, 2010, 27(9): 240-247.
[8] 刘祥庆;刘晶波. 基于纤维模型的拱形断面地铁车站结构弹塑性地震反应时程分析[J]. 工程力学, 2008, 25(10): 0-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 严加宝,王哲,J.Y.Richard Liew. 双钢板-混凝土组合结构研究进展[J]. 工程力学, 0, (): 0 .
[2] 汪大洋, 韩启浩, 张永山. 多块混凝土板拼装组合钢板剪力墙试验与有限元参数影响研究[J]. 工程力学, 2018, 35(7): 83 -93,138 .
[3] 孙建, 邱洪兴, 谭志成, 蒋洪波. 采用螺栓连接的工字形全装配式RC剪力墙试验研究[J]. 工程力学, 2018, 35(8): 172 -183,191 .
[4] 张爱林, 张勋, 刘学春, 王琦. 钢框架-装配式两边连接薄钢板剪力墙抗震性能试验研究[J]. 工程力学, 2018, 35(9): 54 -63,72 .
[5] 丁然, 芶双科, 樊健生, 张君. 后浇LSECC装配整体式梁受力性能试验研究[J]. 工程力学, 2018, 35(10): 56 -65,74 .
[6] 罗大明, 牛荻涛, 苏丽. 荷载与环境共同作用下混凝土耐久性研究进展[J]. 工程力学, 2019, 36(1): 1 -14,43 .
[7] 潘超, 张瑞甫, 王超, 逯静洲. 单自由度混联II型惯容减震体系的随机地震响应与参数设计[J]. 工程力学, 2019, 36(1): 129 -137,145 .
[8] 袁 驷, 蒋凯峰, 邢沁妍. 膜结构极小曲面找形的一种自适应有限元分析 [J]. 工程力学, 0, (): 0 .
[9] 吕大刚, 刘洋, 于晓辉. 第二代基于性能地震工程中的地震易损性模型及正逆概率风险分析[J]. 工程力学, 2019, 36(9): 1 -11,24 .
[10] 罗大明, 牛荻涛, 苏 丽. 荷载与环境共同作用下混凝土耐久性研究进展 [J]. 工程力学, 0, (): 0 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日