工程力学 ›› 2019, Vol. 36 ›› Issue (7): 136-145.doi: 10.6052/j.issn.1000-4750.2018.04.0224

• 土木工程学科 • 上一篇    下一篇

双柱式摇摆桥墩结构体系地震反应和倒塌分析

周雨龙, 杜修力, 韩强   

  1. 北京工业大学城市与工程安全减灾教育部重点实验室, 北京 100124
  • 收稿日期:2018-04-10 修回日期:2018-08-09 出版日期:2019-07-06 发布日期:2019-07-06
  • 通讯作者: 杜修力(1962-),男,四川人,教授,博士,博导,主要从事地震工程和结构动力学等方面的研究(E-mail:duxiuli@bjut.edu.cn). E-mail:duxiuli@bjut.edu.cn
  • 作者简介:周雨龙(1988-),男,黑龙江人,博士生,主要从事桥梁抗震方面的研究(E-mail:zhouyulong4554@163.com);韩强(1974-),男,河南人,教授,博士,博导,主要从事桥梁抗震方面的研究(E-mail:qhan@bjut.edu.cn).
  • 基金资助:
    教育部“创新团队发展计划”(IRT13044);国家自然科学基金项目(51421005,51578022)

Seismic response and overturning of double-column rocking column bridge system

ZHOU Yu-long, DU Xiu-li, HAN Qiang   

  1. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
  • Received:2018-04-10 Revised:2018-08-09 Online:2019-07-06 Published:2019-07-06

摘要: 摇摆构造可将地震损伤控制在摇摆界面内,以避免主体结构损伤破坏,且具有较好自复位能力。为研究一种双柱式摇摆桥墩结构体系的地震反应,基于拉格朗日方程和动量矩守恒定理给出计算该双柱式摇摆桥墩结构体系动力反应的刚体动力分析模型,并进行了实例分析、参数分析和倒塌分析。研究结果表明:采用工程实际尺寸的双柱式摇摆桥墩结构体系可满足我国桥梁抗震设计规范的E2地震抗震设计需求;桥墩宽高比和尺寸的增大可减小结构体系的地震反应;给出在Ricker小波作用下的倒塌加速度谱和两种倒塌模式,以及倒塌模式过渡现象需要在抗震设计中得到重视的建议,并提出一种墩底扩大截面的抗倒塌措施。

关键词: 摇摆体系, 双柱式桥墩, 分析模型, 地震反应, 倒塌分析

Abstract: Rocking structures with self-centering capacity can control the damage in the rocking interface to protect the major structure from damage. To investigate the seismic response of a rocking double-column bridge system, a dynamic analytical model of rigid bodies was used to predict the seismic response of a rocking bridge system based on the Lagrange method and momentum conservation law. This analytical model was used to perform a case study in practice, parametric analysis and overturning analysis. It can be concluded that the rocking double-column bridge system with dimensions in practice can satisfy the seismic design demand of the E2 earthquake according to the seismic design code of bridges in China. With the increase of the slenderness and size of columns, the seismic response of this bridge system decreases. Overturning acceleration spectra and two overturning modes of rocking double-column bridge system were obtained due to Ricker wavelets. The transition phenomenon from overturning mode I to overturning mode Ⅱ should be paid attention in seismic design. The enlarged bottom section of rocking columns was proposed to limit the overturning of the rocking bridge system.

Key words: rocking system, two-column bent, analytical model, seismic response, overturning analysis

中图分类号: 

  • U442.55
[1] JTG/T B02-01-2008, 公路桥梁抗震设计细则[S]. 北京:人民交通出版社, 2008. JTG/T B02-01-2008, Guidelines for seismic design of highway bridges[S]. Beijing:China Communications Press, 2008. (in Chinese)
[2] CJJ 166-2011, 城市桥梁抗震设计规范[S]. 北京:中国建筑工业出版社, 2011. CJJ 166-2011, Code for seismic design of urban bridges[S]. Beijing:China Building Industry Press, 2011. (in Chinese)
[3] JTG B02-2013, 公路工程抗震规范[S]. 北京:人民交通出版社, 2013. JTG B02-2013, Specification of seismic design for highway engineering[S]. Beijing:China Communications Press, 2013. (in Chinese)
[4] Papaloizou L, Komodromos P. Investigating the seismic response of ancient multi-drum colonnades with two rows of columns using an object-oriented designed software[J]. Advances in Engineering Software, 2012, 44(1):136-149.
[5] Housner G W. The behavior of inverted pendulum structures during earthquakes[J]. Bulletin of the Seismological Society of America, 1963, 53(2):403-417.
[6] Tso W K, Wong C M. Steady state rocking response of rigid blocks part 1:Analysis[J]. Earthquake Engineering and Structural Dynamics, 1989, 18(1):89-106.
[7] Aslam M, Scalise D T, Godden W G. Earthquake rocking response of rigid bodies[J]. Journal of the Structural Division, 1980, 106(2):377-392.
[8] Makris N, Konstantinidis D. The rocking spectrum and the shortcomings of design guidelines[R]. Pacific Earthquake Engineering Research Center, 2001.
[9] Makris N, Konstantinidis D. The rocking spectrum and the limitations of practical design methodologies[J]. Earthquake Engineering and Structural Dynamics, 2003, 32(2):265-289.
[10] Makris N, Zhang J. Rocking response of anchored blocks under pulse-type motions[J]. Journal of Engineering Mechanics, 2001, 127(5):484-493.
[11] Beck J L, Skinner R I. The seismic response of a reinforced concrete bridge pier designed to step[J]. Earthquake Engineering and Structural Dynamics, 1973, 2(4):343-358.
[12] Cormack L G. The design and construction of the major bridges on the Mangaweka rail deviation[J]. Transactions of the Institution of Professional Engineers New Zealand:Civil Engineering Section, 1988, 15(1):17-23.
[13] Priestley M J N, Seible F, Calvi G M. Seismic design and retrofit of bridges[M]. New York:John Wiley and Sons, 1996.
[14] Astaneh-Asl A, Shen J H. Rocking behavior and retrofit of tall bridge piers[C]//Structural Engineering in Natural Hazards Mitigation. California:American Society of Civil Engineers, 1993:121-126.
[15] Dowdell D J, Hamersley B A. Lions' Gate Bridge North Approach:Seismic retrofit[C]//Behaviour of Steel Structures in Seismic Areas. Netherlands:Balkema, 2000:319-326.
[16] Jones M H, Holloway L J, Toan V, et al. Seismic retrofit of the 1927 Carquinez Bridge by a displacement capacity approach[C]//Bridges and Highways Progress in Research and Practice. Washington, D.C.:Federal Highway Administration, 1997:445-456.
[17] Ingham T J, Rodriguez S, Nader M N, et al. Seismic retrofit of the golden gate bridge[C]//Progress in Research and Practice. Washington, D.C.:Federal Highway Administration, 1995:2021-2030.
[18] 司炳君, 谷明洋, 孙治国, 等. 近断层地震动下摇摆-自复位桥墩地震反应分析[J]. 工程力学, 2017, 34(10):87-97. Si Bingjun, Gu Mingyang, Sun Zhiguo, et al. Seismic response analysis of the rocking self-centering bridge piers under the near-fault ground motions[J]. Engineering Mechanics, 2017, 34(10):87-97. (in Chinese)
[19] 何铭华, 辛克贵, 郭佳. 新型自复位桥梁墩柱节点的局部稳定性研究[J]. 工程力学, 2012, 29(4):122-27. He Minghua, Xin Kegui, Guo Jia. Local stability study of new bridge piers with self-centering joints[J]. Engineering Mechanics, 2012, 29(4):122-127. (in Chinese)
[20] Mander J B, Cheng C T. Seismic resistance of bridge piers based on damage avoidance design[R]. New York:US National Center for Earthquake Engineering Research, 1997.
[21] Palermo A, Pampanin S, Marriott D. Design, modeling, and experimental response of seismic resistant bridge piers with posttensioned dissipating connections[J]. Journal of Structural Engineering, 2007, 133(11):1648-1661.
[22] Marriott D, Pampanin S, Palermo A. Quasi-static and pseudo-dynamic testing of unbonded post-tensioned rocking bridge piers with external replaceable dissipaters[J]. Earthquake Engineering and Structural Dynamics, 2009, 38(3):331-354.
[23] Guo T, Cao Z, Xu Z, et al. Cyclic load tests on self-centering concrete pier with external dissipators and enhanced durability[J]. Journal of Structural Engineering, 2015:04015088.
[24] 贾振雷. 自复位摇摆桥梁结构抗震设计理论及试验研究[D]. 北京:北京工业大学, 2018. Jia Zhenlei. Theoretical and experimental study on seismic design of self-centering rocking bridge[D]. Beijing:Beijing University of Technology, 2018. (in Chinese)
[25] ElGawady M A, Ma Q, Butterworth J W, et al. Effects of interface material on the performance of free rocking blocks[J]. Earthquake Engineering and Structural Dynamics, 2011, 40(4):375-392.
[26] DeJong M J, Dimitrakopoulos E G. Dynamically equivalent rocking structures[J]. Earthquake Engineering and Structural Dynamics, 2014, 43(10):1543-1563.
[27] Dimitrakopoulos E G, Paraskeva T S. Dimensionless fragility curves for rocking response to near-fault excitations[J]. Earthquake Engineering and Structural Dynamics, 2015, 44(12):2015-2033.
[28] Blandon C A, Priestley M J N. Equivalent viscous damping equations for direct displacement based design[J]. Journal of Earthquake Engineering, 2005, 9(2):257-278.
[29] GB 50909-2014, 城市轨道交通结构抗震设计规范[S]. 北京:中国计划出版社, 2014. GB 50909-2014, Code for seismic design of urban rail transit structures[S]. Beijing:China Planning Press, 2014. (in Chinese)
[30] FEMA P695, Quantification of building seismic performance factors[S]. Washington:Federal Emergency Management Agency, 2009.
[31] Mavroeidis G P, Papageorgiou A S. A mathematical representation of near-fault ground motions[J]. Bulletin of the Seismological Society of America, 2003, 93(3):1099-1131.
[32] Vassiliou M F, Makris N. Estimating time scales and length scales in pulse-like earthquake acceleration records with wavelet analysis[J]. Bulletin of the Seismological Society of America, 2011, 101(2):596-618.
[33] Makris N, Black C J. Dimensional analysis of rigid-plastic and elastoplastic structures under pulse-type excitations[J]. Journal of Engineering Mechanics, 2004, 130(9):1006-1018.
[34] Hall J F, Heaton T H, Halling M W, et al. Near-source ground motion and its effects on flexible buildings[J]. Earthquake Spectra, 1995, 11(4):569-605.
[35] Alavi B, Krawinkler H. Effects of near-source ground motions on frame-structures[R]. California:Stanford University, 2001.
[36] Makris N, Chang S. Effect of viscous, viscoplastic and friction damping on the response of seismic isolated structures[J]. Earthquake Engineering and Structural Dynamics, 2000, 29(1):85-107.
[37] Ricker N. Further developments in the wavelet theory of seismogram structure[J]. Bulletin of the Seismological Society of America, 1943, 33(3):197-228.
[38] Ricker N. Wavelet functions and their polynomials[J]. Geophysics, 1944, 9(3):314-323.
[39] Dimitrakopoulos E G, DeJong M J. Revisiting the rocking block:closed-form solutions and similarity laws[C]//Mathematical, Physical and Engineering Science. New York:Royal Society, 2012:2294-2318.
[1] 宝鑫, 刘晶波, 王东洋, 王建平, 郭东, 宋可. P波垂直入射下海域岛礁场地动力反应分析[J]. 工程力学, 2019, 36(S1): 1-7.
[2] 杨雅斌, 石广玉. 正交异性钢桥面板肋-面板焊缝疲劳验算的应力分析模型评估[J]. 工程力学, 2019, 36(S1): 98-105.
[3] 刘晶波, 王东洋, 谭辉, 宝鑫. 隧道纵向地震反应最不利时刻的确定及其应用[J]. 工程力学, 2019, 36(S1): 240-247.
[4] 谭辉, 刘晶波, 王东洋, 宝鑫, 李述涛. 地下结构地震反应分析中人工边界条件和地震波动输入方法对比研究[J]. 工程力学, 2018, 35(S1): 212-216,222.
[5] 张永亮, 冯鹏飞, 陈兴冲, 宁贵霞, 丁明波. 基于静-动力分析相结合方法的桥梁桩基础地震反应分析及抗震性能评价[J]. 工程力学, 2018, 35(S1): 325-329,343.
[6] 刘浩, 李宏男. 考虑累积损伤退化及应变率效应的钢筋混凝土框架结构倒塌分析[J]. 工程力学, 2018, 35(4): 87-95.
[7] 孙振宇, 张顶立, 房倩, 台启民, 于富才. 基于超前加固的深埋隧道围岩力学特性研究[J]. 工程力学, 2018, 35(2): 92-104.
[8] 崔浩然, 吴刚, 冯德成. 摇摆构件摇摆前分析模型[J]. 工程力学, 2018, 35(12): 34-45.
[9] 刘晶波, 王东洋, 谭辉, 宝鑫, 王文晖. 隧道纵向地震反应分析的整体式反应位移法[J]. 工程力学, 2018, 35(10): 17-26.
[10] 申大为, 徐明, 刘鹏飞. 加筋土整体式桥地震反应研究[J]. 工程力学, 2018, 35(10): 135-143.
[11] 杜修力, 李洋, 赵密, 许成顺, 路德春. 下卧刚性基岩条件下场地土-结构体系地震反应分析方法研究[J]. 工程力学, 2017, 34(5): 52-59.
[12] 卢啸, 陆新征, 李梦珂, 顾栋炼, 解琳琳. 地震作用设计参数调整对框架结构抗震设计及安全性的影响[J]. 工程力学, 2017, 34(4): 22-31.
[13] 郑山锁, 石磊, 张晓辉, 郑捷, 王晓飞, 左英. 酸性大气环境下锈蚀钢框架结构振动台试验研究[J]. 工程力学, 2017, 34(11): 77-88,108.
[14] 孙颖, 陈天海, 卓卫东, 谷音, 许智星. 长周期地震动作用下隔震连续梁桥地震反应特性研究[J]. 工程力学, 2016, 33(增刊): 244-250.
[15] 王晓伟, 叶爱君, 罗富元. 液化场地桩柱式基础桥梁结构地震反应的敏感性分析[J]. 工程力学, 2016, 33(8): 132-140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日