工程力学 ›› 2019, Vol. 36 ›› Issue (5): 157-165.doi: 10.6052/j.issn.1000-4750.2018.04.0221

• 土木工程学科 • 上一篇    下一篇

T形配钢型钢混凝土柱-钢梁框架抗震性能研究

曾磊1, 谢炜1, 郑山锁2, 陈熠光3, 任雯婷1   

  1. 1. 长江大学城市建设学院, 湖北, 荆州 434023;
    2. 西安建筑科技大学土木工程学院, 陕西, 西安 710055;
    3. 武汉建工集团股份有限公司, 湖北, 武汉 430056
  • 收稿日期:2018-04-08 修回日期:2018-11-06 出版日期:2019-05-25 发布日期:2019-04-03
  • 通讯作者: 曾磊(1979-),男,湖北洪湖人,教授,博士,从事组合结构及工程抗震研究(E-mail:zenglei28@126.com). E-mail:zenglei28@126.com
  • 作者简介:谢炜(1993-),男,湖北黄冈人,硕士生,从事型钢混凝土组合结构研究(E-mail:xiewei0202@126.com);郑山锁(1960-),男,陕西渭南人,教授,博士,从事组合结构及工程抗震研究(E-mail:Zhengshansuo@263.net);陈熠光(1992-),男,湖北黄冈人,硕士生,从事型钢混凝土组合结构研究(E-mail:cyg19920907@126.com);任雯婷(1993-),女,湖北荆门人,硕士生,从事型钢混凝土组合结构研究(E-mail:201571401@yangtze.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51678475,51108041);湖北省自然科学基金项目(2016CFB604);湖北省教育厅科学研究计划重点项目(D20161305);陕西省重点研发计划项目(2017ZDXM-SF-093)

RESEARCH ON THE SEISMIC BEHAVIOR OF FRAME STRUCTURES WITH T-SHAPED STEEL REINFORCED CONCRETE COLUMNS AND STEEL BEAMS

ZENG Lei1, XIE Wei1, ZHENG Shan-suo2, CHEN Yi-guang3, REN Wen-ting1   

  1. 1. School of Urban Construction, Yangtze University, Jingzhou, Hubei 434023, China;
    2. School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China;
    3. Wuhan Construction Engineering Group Co., Ltd, Wuhan, Hubei 430056, China
  • Received:2018-04-08 Revised:2018-11-06 Online:2019-05-25 Published:2019-04-03

摘要: 为研究T形配钢型钢混凝土柱-钢梁框架的抗震性能,进行了1榀3层2跨、缩尺比例为1:3的框架试件拟静力试验,了解其破坏形态、滞回曲线和骨架曲线,分析了试件的延性、耗能能力、刚度和强度退化规律。基于纤维模型对框架试件进行了数值模拟,研究了结构抗震性能在不同轴压比、配钢率和混凝土强度下的变化规律。结果表明:在水平低周往复荷载作用下,试件出现"梁铰"破坏,具有良好的延性和耗能能力,满足"强柱弱梁,强剪弱弯,强节点弱构件"的抗震设计要求。轴压比对试件屈服后的性能影响较大,结构的承载力和延性随轴压比增大而有所降低,设计时需合理控制轴压比;配钢率主要影响初始刚度和极限承载力,结构的抗震性能随配钢率增大得到有效改善;结构的极限承载力随着混凝土强度增大而提高,但结构的延性会略有降低,设计时需合理考虑。研究成果可为该类结构的设计提供可靠的支撑。

关键词: T形配钢, 型钢混凝土框架, 抗震性能, 拟静力试验, 数值模拟

Abstract: To study the seismic behavior of frames with T-shaped steel reinforced concrete columns and steel beams, a pseudo-static test of a 1/3 scaled, 3-story 2-bay specimen was carried out. The main results such as the failure pattern, hysteretic and skeleton curves were obtained. The ductility, energy dissipation capacity and degradation of stiffness and strength of the specimen were analyzed. Numerical simulations were conducted with the fiber model to study the effects of different design parameters such as the axial compression ratio, steel ratio and concrete strength on the seismic performance of the frame. It was demonstrated that the specimen exhibited a beam-hinge failure mode under the condition of horizontal cyclic loading. The specimen had good ductility and energy dissipation capacity and it met the seismic design requirements of strong column-weak beam, strong shear-weak bending and strong joint-weak pole. The axial compression ratio has great influence on the performance of the specimen after yielding. With the increase of the axial compression ratio, the strength and ductility of the structure will decrease. It is necessary to control the axial compression ratio in a reasonable range in the design. The steel ratio mainly affects the initial stiffness and ultimate strength, while its increase can effectively improve the seismic performance of the frame. The increase of concrete strength can increase the ultimate strength of the structure, but reduce the ductility slightly. It is of great significance to consider concrete strength comprehensively in the design. The research results can provide reliable support for the design of this kind of structures.

Key words: T-shaped steel, reinforced concrete frame, seismic behavior, quasi-static test, numerical simulations

中图分类号: 

  • TU398.9
[1] Ataei A, Bradford M A, Valipour H. Sustainable design of deconstructable steel-concrete composite structures[J]. Procedia Engineering, 2016, 145(4):1153-1160.
[2] Luo Y, Wang M Y, Zhou M, et al. Optimal topology design of steel-concrete composite structures under stiffness and strength constraints[J]. Computers & Structures, 2012, 112(4):433-444.
[3] Papavasileiou G S, Charmpis D C. Seismic design optimization of multi-storey steel-concrete composite buildings[J]. Computers & Structures, 2016, 170:49-61.
[4] 张超, 薛素铎, 王广勇, 等. 火灾后型钢混凝土框架结构力学性能试验研究及分析[J]. 工程力学, 2018, 35(5):152-161.Zhang chao, Xue suduo, Wang guangyong, et al. Experimental research and analysis on the post-fire performance of steel reinforced concrete frame structures[J]. Engineering Mechanics, 2018, 35(5):152-161. (in Chinese)
[5] 邓明科, 马福栋, 李勃志, 等. 基于修正拉-压杆模型的型钢混凝土深梁受剪承载力分析[J]. 工程力学, 2017, 34(12):95-103. Deng Mingke, Ma Fudong, Li Bozhi, et al. Analysis on shear capacity of SRC deep beams based on modified strut-and-tie model[J]. Engineering Mechanics, 2017, 34(12):95-103. (in Chinese)
[6] 曾磊, 涂祥, 许成祥, 等. 非对称配钢钢骨混凝土柱抗震性能试验研究[J]. 建筑结构学报, 2013, 34(3):141-151. Zeng Lei, Tu Xiang, Xu Chengxiang, et al. Experimental study on seismic behavior of steel reinforced concrete column with unsymmetrical steel cross-sections[J]. Journal of Building Structures, 2013, 34(3):141-151. (in Chinese)
[7] Xue B, Gong J. Study on steel reinforced concrete-filled GFRP tubular column under compression[J]. Thin-Walled Structures, 2016, 106(4):1-8.
[8] 曾磊, 涂祥, 吴园园. T形配钢型钢混凝土构件正截面承载力计算方法[J]. 工程力学, 2013, 30(10):115-121. Zeng Lei, Tu Xiang, Wu Yuanyuan. Normal section bearing capacity calculation of steel reinforced concrete members with T-shaped steel[J]. Engineering Mechanics, 2013, 30(10):115-121. (in Chinese)
[9] Chen S, Wu P. Analytical model for predicting axial compressive behavior of steel reinforced concrete column[J]. Journal of Constructional Steel Research, 2017, 128(1):649-660.
[10] 曾磊, 吴园园, 张地, 等. 钢骨混凝土异形柱-钢梁节点抗震性能试验研究[J]. 振动与冲击, 2016, 35(4):224-229, 240. Zeng Lei, Wu Yuanyuan, Zhang Di, et al. Tests for aseismic behavior of frame joints between a steel reinforced concrete special column and a steel beam[J]. Journal of Vibration and Shock, 2016, 35(4):224-229, 240. (in Chinese)
[11] 布欣, 谷倩, 王新武. 剖分T型钢梁柱连接框架中柱空间节点抗震试验研究[J]. 工程力学, 2017, 34(8):105-116. Bu Xin, Gu Qian, Wang Xinwu. Experimental study on the seismic performance of three-dimensional beam to middle column connection with T-stub[J]. Engineering Mechanics, 2017, 34(8):105-116. (in Chinese)
[12] Braconi A, Elamary A, Salvatore W. Seismic behaviour of beam-to-column partial-strength joints for steel-concrete composite frames[J]. Journal of Constructional Steel Research, 2010, 66(12):1431-1444.
[13] 刘祖强, 薛建阳, 韩琛, 等. 实腹式型钢混凝土T形柱抗震性能试验研究[J]. 工程力学, 2018, 35(5):17-26. Liu Zuqiang, Xue Jianyang, Han Chen, et al. Experimental study on aseismic performance of solid steel reinforced concrete T-shaped column[J]. Engineering Mechanics, 2018, 35(5):17-26. (in Chinese)
[14] 杨涛, 张喜德, 钟海牛, 等. T形截面钢骨混凝土异形柱框架抗震性能拟动力试验[J]. 中南大学学报:自然科学版, 2015, 46(6):2171-2177. Yang Tao, Zhang Xide, Zhong Hainiu, et al. Pseudo-dynamic test on seismic behavior of frame with T-shaped SRC columns[J]. Journal of Central South University (Science and Technology), 2015, 46(6):2171-2177. (in Chinese)
[15] 薛建阳, 张昭祥, 刘祖强, 等. 实腹式型钢混凝土异形柱中框架拟静力试验及静力弹塑性分析[J]. 工程力学, 2014, 31(5):137-144. Xue Jianyang, Zhang Zhaoxiang, Liu Zuqiang, et al. Pseudo-static test and static elasto-plastic analysis of middle frame with solid steel reinforced concrete special-shaped columns[J]. Engineering Mechanics, 2014, 31(5):137-144. (in Chinese)
[16] 刘祖强, 薛建阳, 赵鸿铁. 型钢混凝土异形柱框架滞回性能分析[J]. 工程力学, 2016, 33(7):73-83. Liu Zuqiang, Xue Jianyang, Zhao Hongtie. Analysis on hysteretic behavior of steel reinforced concrete frame with special-shaped columns[J]. Engineering Mechanics, 2016, 33(7):73-83. (in Chinese)
[17] Wang G Y, Shi Y, Zhang D M, et al. Experimental research on post-fire seismic performance of steel reinforced concrete columns[J]. Procedia Engineering, 2017, 210(11):456-463.
[18] GB 50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[19] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[20] JGJ 138-2001, 型钢混凝土组合结构技术规程[S]. 北京:中国建筑工业出版社, 2001. JGJ138-2001, Technical specification for steel reinforced concrete composnte structures[S]. Beijing:China Architecture & Building Press, 2001. (in Chinese)
[21] 任雯婷. 非对称配钢型钢混凝土柱-钢梁框架结构抗震性能试验研究及有限元分析[D]. 荆州:长江大学, 2018:33-46. Ren Wenting, Experimental study and finite element analysis on seismic behavior of frame structures composed of concrete encased columns with special section and steel beams[D]. Jingzhou:Yangtze University, 2018:33-46. (in Chinese)
[22] JGJ 101-96, 建筑抗震试验方法规程[S]. 北京:中国建筑工业出版社, 1997. JGJ 101-96, Specificating of testing methods for earthquake resistant building[S]. Beijing:China Architecture & Building Press, 1997. (in Chinese)
[23] Kent D C, Park R. Flexural members with confined concrete[J]. Journal of the Structural Division, 1971, 97(1):1969-1990.
[1] 种迅, 张蓝方, 万金亮, 王德才, 叶献国, 解琳琳, 邵徽斌. 两层带开洞预制剪力墙抗震性能试验研究与数值模拟分析[J]. 工程力学, 2019, 36(5): 176-183.
[2] 王伟, 胡书领, 邹超, 陈越时. 节点性能对分层装配支撑钢框架抗震性能的影响研究[J]. 工程力学, 2019, 36(4): 206-213.
[3] 李腾飞, 苏明周, 隋龑, 马磊, 韩丹. 高强钢组合K形偏心支撑钢框架抗震性能混合试验[J]. 工程力学, 2019, 36(4): 100-108,124.
[4] 董金芝, 张富文, 李向民. 框架-预应力摇摆墙结构抗震性能试验研究[J]. 工程力学, 2019, 36(4): 167-176.
[5] 徐龙河, 武虎. 设置自复位耗能支撑的斜拉桥横向抗震性能研究[J]. 工程力学, 2019, 36(4): 177-187.
[6] 朱张峰, 郭正兴. 考虑竖向与水平接缝的工字形装配式混凝土剪力墙抗震性能试验研究[J]. 工程力学, 2019, 36(3): 139-148.
[7] 蒋庆, 王瀚钦, 冯玉龙, 种迅. 铰支桁架-框架结构抗震设计与性能研究[J]. 工程力学, 2019, 36(3): 105-113.
[8] 陈云, 蒋欢军, 刘涛, 万志威, 鲁正. 分级屈服型金属阻尼器抗震性能研究[J]. 工程力学, 2019, 36(3): 53-62.
[9] 王景全, 王震, 高玉峰, 诸钧政. 预制桥墩体系抗震性能研究进展:新材料、新理念、新应用[J]. 工程力学, 2019, 36(3): 1-23.
[10] 田小红, 苏明周, 连鸣, 李慎, 王凤. 高强钢组合K形偏心支撑钢框架抗震性能分析[J]. 工程力学, 2019, 36(3): 182-191.
[11] 邓明科, 吕浩, 宋恒钊. 外包钢板-高延性混凝土组合连梁抗震性能试验研究[J]. 工程力学, 2019, 36(3): 192-202.
[12] 钟紫蓝, 王书锐, 杜修力, 李立云, 侯本伟. 管道承插式接口轴向力学性能试验研究与数值模拟[J]. 工程力学, 2019, 36(3): 224-230,239.
[13] 白国良, 秦朝刚, 徐亚洲, 苏宁粉, 吴涛, 孙煜喆. 装配整体式与现浇剪力墙结构抗震性能对比分析[J]. 工程力学, 2019, 36(2): 36-44.
[14] 李天娥, 孙晓颖, 武岳, 王长国. 平流层飞艇气动阻力的参数分析[J]. 工程力学, 2019, 36(1): 248-256.
[15] 高良田, 王键伟, 王庆, 贾宾, 王永魁, 石莉. 破冰船在层冰中运动的数值模拟方法[J]. 工程力学, 2019, 36(1): 227-237.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 林晓平;刘增华;雷振坤;武湛君. 水下带粘弹性层输油管道中纵向导波的传播特性[J]. 工程力学, 2012, 29(4): 244 -250 .
[2] 程麦理. 黄土场地桩基横向力学行为数值模拟[J]. 工程力学, 0, (): 0 .
[3] 吕海双, 周蓓蕾, 曹倩, 汪洋. 大型项目中间的工程力学解决方案[J]. 工程力学, 2019, 36(3): 40 -52 .
[4] 严加宝,王哲,J.Y.Richard Liew. 双钢板-混凝土组合结构研究进展[J]. 工程力学, 0, (): 0 .
[5] 周颖, 吴 浩, 顾安琪. 地震工程:从抗震、减隔震到可恢复性 [J]. 工程力学, 0, (): 0 .
[6] 阿斯哈, 周长东, 邱意坤, 梁立灿, 张泳. 考虑位置函数的木材表面嵌筋粘结滑移本构关系[J]. 工程力学, 0, (): 0 .
[7] 张建春, 张大山, 董毓利, 王卫华. 火灾下钢-混凝土组合梁内力变化的试验研究 [J]. 工程力学, 0, (): 0 .
[8] 柯晓军, 苏益声, 商效瑀, 孙海洋. 钢管混凝土组合柱压弯性能试验及承载力计算[J]. 工程力学, 2018, 35(12): 134 -142 .
[9] 梁兴文, 王莹, 于婧, 李林. 预制UHPC模板及采用预制模板的RC板受力性能及承载力分析 [J]. 工程力学, 0, (): 0 .
[10] 邓明科, 李琦琦, 刘海勃, 景武斌. 高延性混凝土低矮剪力墙抗震性能试验研究及抗剪承载力计算 [J]. 工程力学, 0, (): 0 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日