工程力学 ›› 2019, Vol. 36 ›› Issue (6): 92-100.doi: 10.6052/j.issn.1000-4750.2018.04.0217

• 土木工程学科 • 上一篇    下一篇

预制装配型钢混凝土梁受剪承载力试验与计算方法研究

杨勇1, 薛亦聪1, 于云龙1,2   

  1. 1. 西安建筑科技大学土木工程学院, 西安 710055;
    2. 结构工程与抗震教育部重点实验室, 西安 710055
  • 收稿日期:2018-04-10 修回日期:2018-09-12 出版日期:2019-06-25 发布日期:2019-05-31
  • 通讯作者: 薛亦聪(1992-),男,陕西人,博士生,主要从事钢-混凝土组合结构研究(E-mail:xjdxyc@foxmail.com). E-mail:xjdxyc@foxmail.com
  • 作者简介:杨勇(1976-),男,江西人,教授,博士,博导,主要从事钢-混凝土组合结构研究(E-mail:yyhhp2004@163.com);于云龙(1989-),男,陕西人,工程师,博士,主要从事钢-混凝土组合结构研究(E-mail:yyllyp126@sina.com).
  • 基金资助:
    国家自然科学基金项目(51478287,51578443);国家重点研发计划项目(2017YFC0703404)

RESEARCH ON THE SHEAR STRENGTH OF PRECAST STEEL REINFORCED CONCRETE BEAMS

YANG Yong1, XUE Yi-cong1, YU Yun-long1,2   

  1. 1. Xi'an University of Architecture and Technology, Xi'an 710055, China;
    2. Key Lab of Structure and Earthquake Resistance, Xi'an 710055, China
  • Received:2018-04-10 Revised:2018-09-12 Online:2019-06-25 Published:2019-05-31

摘要: 为了深入研究预制装配型钢混凝土梁的受剪机理并提出可准确预测其受剪承载力的计算公式,该文完成了2个足尺预制装配型钢混凝土梁试件的静力剪切性能试验。通过分析试件的破坏过程、荷载-位移曲线和应变发展规律,对不同剪跨比下试件的破坏形态和承载能力进行了研究。基于变形协调桁架-拱模型和Nakamura模型建立了该种预制装配型钢混凝土梁及普通现浇型钢混凝土梁共同适用的受剪承载力计算模型。通过与75个发生剪切破坏的型钢混凝土梁试验结果对比可得:该文提出的计算方法可较好反映型钢混凝土梁的剪切破坏机理,试验值与计算值吻合良好;规范AISC 360-2010和JGJ 138-2016建议的受剪承载力计算公式较为保守。

关键词: 型钢混凝土梁, 预制装配结构, 受剪承载力, 试验研究, 计算方法

Abstract: To analyze the shear failure mechanism of precast steel reinforced concrete beams and put forward the corresponding calculation method, two full-scale precast steel reinforced concrete beams were tested under static four-point loading. The failure patterns, load-displacement curves and strain development were recorded to investigate the shear mechanism and strength of the specimens of different aspect ratios. On the basis of the test results, a set of calculation formulas based on the compatible truss-arch model and Nakamura model were proposed to predict the shear strength of both precast and conventional steel reinforced concrete beams. The comparison with the existing results of 75 shear-critical steel reinforced concrete beams shows that the proposed method can provide reasonable predictions of the shear strength, and the results calculated by the AISC 360-2010 model and JGJ 138-2016 model are relatively conservative.

Key words: steel reinforced concrete beam, precast structure, shear capacity, experimental study, calculation method

中图分类号: 

  • TU398+.9
[1] 薛建阳. 组合结构设计原理[M]. 北京:中国建筑工业出版社, 2010:99-101. Xue Jianyang. Composite structure design principle[M]. Beijing:China Architecture & Building Press, 2010:99-101. (in Chinese)
[2] 程万鹏, 宋玉普, 张秀娟. 预制装配式部分钢骨混凝土框架梁柱节点承载能力的试验研究[J]. 大连交通大学学报, 2014, 35(4):52-55. Cheng Wanpeng, Song Yupu, Zhang Xiujuan. Experiment study of bearing capacity for beam and column joints of precast and discontinuous steel reinforced concrete[J]. Journal of Dalian Jiaotong University, 2014, 35(4):52-55. (in Chinese))
[3] 程万鹏, 宋玉普, 王军. 预制装配式部分钢骨混凝土框架梁柱中节点抗震性能试验研究[J]. 大连理工大学学报, 2015, 55(2):171-178. Cheng Wanpeng, Song Yupu, Wang Jun. Experimental study of seismic performance for interior beam-column joints of precast and discontinuous steel reinforced concrete[J]. Journal of Dalian University of Technology, 2015, 55(2):171-178. (in Chinese)
[4] 张雪松, 李忠献. 低周反复循环荷载作用下装配整体式钢骨混凝土框架节点抗震性能试验研究[J]. 东南大学学报(自然科学版), 2005, 35(sup1):1-4. Zhang Xuesong, Li Zhongxian. Seismic behavior of joints of prefabricated steel reinforced concrete integral frame under low cyclic and reciprocal loading[J]. Journal of Southeast University (Natural Science Edition), 2005, 35(sup1):1-4. (in Chinese)
[5] Hong W K, Park S C, Kim J M, et al. Composite beam composed of steel and precast concrete (modularized hybrid system, MHS). Part I:Experimental investigation[J]. Structural Design of Tall & Special Buildings, 2010, 19(3):275-289.
[6] 杨勇, 于云龙, 杨洋, 等. 部分预制装配型钢混凝土梁受剪性能试验研究[J]. 建筑结构学报, 2017, 38(6):53-60. Yang Yong, Yu Yunlong, Yang Yang, et al. Experimental study on shear performance of partially precast steel reinforced concrete beams[J]. Journal of Building Structures, 2017, 38(6):53-60. (in Chinese)
[7] 杨勇, 薛亦聪, 于云龙, 等. 部分预制装配型钢混凝土梁受弯性能试验研究[J]. 建筑结构学报, 2017, 38(9):46-53. Yang Yong, Xue Yicong, Yu Yunlong, et al. Experimental study of partially precast steel reinforced concrete beams under positive bending[J]. Journal of Building Structures, 2017, 38(9):46-53. (in Chinese)
[8] Yang Y, Yu Y, Guo Y, et al. Experimental study on shear performance of partially precast Castellated Steel Reinforced Concrete (CPSRC) beams[J]. Steel & Composite Structures, 2016, 21(2):289-302.
[9] 过镇海. 钢筋混凝土原理[M]. 北京:清华大学出版社, 2013:246-253. Guo Zhenhai. Principle of reinforced concrete[M]. Beijing:Tsinghua University Press, 2013:246-253. (in Chinese)
[10] 郑山锁, 胡义, 车顺利, 等. 型钢高强高性能混凝土梁抗剪承载力试验研究[J]. 工程力学, 2011, 28(3):129-135. Zheng Shansuo, Hu Yi, Che Shunli, et al. Experimental study on the shear capacity of SRHSHPC beams[J]. Engineering Mechanics, 2011, 28(3):129-135. (in Chinese)
[11] 吴轶, 蔡健, 杨春, 等. 基于软化拉-压杆模型内置钢构架型钢混凝土深梁受剪承载力预测[J]. 工程力学, 2009, 26(11):134-139. Wu Yi, Cai Jian, Yang Chun, et al. Prediction of shear strength of steel truss reinforced concrete deep beams based on softened strut-and-tie model[J]. Engineering Mechanics, 2009, 26(11):134-139. (in Chinese)
[12] 邓明科, 马福栋, 李勃志, 等. 基于修正拉-压杆模型的型钢混凝土深梁受剪承载力分析[J]. 工程力学, 2017, 34(12):95-103. Deng Mingke, Ma Fudong, Li Bozhi, et al. Analysis on shear capacity of SRC deep beams based on modified strut-and-tie model[J]. Engineering Mechanics, 2017, 34(12):95-103. (in Chinese)
[13] 冯鹏, 强翰霖, 叶列平. 材料、构件、结构的"屈服点"定义与讨论[J]. 工程力学, 2017, 34(3):36-46. Feng Peng, Qiang Hanlin, Ye Lieping. Discussion and definition on yield points of materials, members and structures[J]. Engineering Mechanics, 2017, 34(3):36-46. (in Chinese)
[14] AISC 360-2010, Specification for structural steel buildings[S]. Chicago:American Institute of Steel Construction.
[15] JGJ 138-2016, 组合结构设计规范[S]. 北京:中国建筑工业出版社, 2016. JGJ 138-2016, Code for design of composite structures[S]. Beijing:China Architecture & Building Press, 2016. (in Chinese)
[16] Nakamura S I, Narita N. Bending and shear strengths of partially encased composite I-girders[J]. Journal of Constructional Steel Research, 2003, 59(12):1435-1453.
[17] Pan Z, Li B. Truss-arch model for shear strength of shear-critical reinforced concrete columns[J]. Journal of Structural Engineering, 2013, 139(4):548-560.
[18] Bentz E C, Vecchio F J, Collins M P. Simplified modified compression field theory for calculating shear strength of reinforced concrete elements[J]. ACI Structural Journal, 2007, 103(4):614-624.
[19] Kim J H, Mander J B. Influence of transverse reinforcement on elastic shear stiffness of cracked concrete elements[J]. Engineering Structures, 2007, 29(8):1798-1807.
[20] Ichinose T. A shear design equation for ductile RC members[J]. Earthquake Engineering & Structural Dynamics, 1992, 21(3):197-214.
[21] Choi K K, Park H G. Unified shear strength model for reinforced concrete beams-Part Ⅱ:Verification and simplified method[J]. ACI Structural Journal, 2007, 104(2):153-161.
[22] 车顺利. 型钢高强高性能混凝土梁的基本性能及设计计算理论研究[D]. 西安:西安建筑科技大学, 2008. Che Shunli. Research on basic behaviors and design theory of steel reinforced high strength and high performance concrete beams[D]. Xi'an:Xi'an University of Architecture and Technology, 2008. (in Chinese)
[23] 王秀振. 型钢再生混凝土梁受剪性能试验研究[D]. 西安:西安建筑科技大学, 2011. Wang Xiuzhen. Experimental study on shear behavior of steel reinforced recycled concrete beams[D]. Xi'an:Xi'an University of Architecture and Technology, 2011. (in Chinese)
[24] 王朝霞. 型钢混凝土梁的裂缝和变形的研究[D]. 西安:西安建筑科技大学, 2006. Wang Zhaoxia. Study on cracks and deflections of steel reinforced concrete beams[D]. Xi'an:Xi'an University of Architecture and Technology, 2006. (in Chinese)
[25] 邵永健. 型钢轻骨料混凝土梁的力学性能及设计方法的试验研究[D]. 西安:西安建筑科技大学, 2007. Shao Yongjian. Experimental study on mechanical performance and design method of steel reinforced lightweight aggregate concrete beams[D]. Xi'an:Xi'an University of Architecture and Technology, 2007. (in Chinese)
[26] 中国建筑科学研究院. 混凝土结构研究报告选集[M]. 北京:中国建筑工业出版社, 1994:478-489. China Academy of Building Research. Research report in reinforced concrete structure[M]. Beijing:China Architecture & Building Press, 1994:478-489. (in Chinese)
[1] 魏慧, 吴涛, 刘洋, 刘喜. 考虑尺寸效应的深受弯构件受剪模型分析[J]. 工程力学, 2019, 36(5): 130-136.
[2] 于云龙, 杨勇, 薛亦聪, 刘亚平, 蒋雪雅. 型钢混凝土空腹叠合梁受剪承载力试验研究[J]. 工程力学, 2019, 36(3): 214-223.
[3] 韦芳芳, 郑泽军, 喻君, 王永泉. 基于钢板屈曲分析的双钢板-混凝土组合剪力墙轴压承载力计算方法[J]. 工程力学, 2019, 36(2): 154-164.
[4] 徐明雪, 梁兴文, 于婧, 李林. UHPC梁短期刚度理论与试验研究[J]. 工程力学, 2019, 36(1): 146-154,164.
[5] 丁杰, 邹昀, 蔡鑫, 李天祺, 郑黎君, 赵桃干. 损伤可控型钢框架边节点的试验研究[J]. 工程力学, 2018, 35(S1): 107-112.
[6] 唐琼, 李易, 陆新征, 闫维明. 多螺箍筋柱轴压承载力研究[J]. 工程力学, 2018, 35(S1): 166-171.
[7] 齐欣, 许浒, 余志祥, 赵雷, 孟庆成. 柔性拦截结构中减压环动态力学性能试验研究[J]. 工程力学, 2018, 35(9): 188-196.
[8] 施刚, 王珣, 高阳, 张勇. 国产低屈服点钢材循环加载试验研究[J]. 工程力学, 2018, 35(8): 30-38.
[9] 孟宝, 钟炜辉, 郝际平. 基于节点刚度的钢框架梁柱子结构抗倒塌性能试验研究[J]. 工程力学, 2018, 35(6): 88-96.
[10] 刘希月, 王元清, 石永久, 谭清华. 高强度钢框架梁柱节点焊接构造的断裂性能试验研究[J]. 工程力学, 2018, 35(5): 54-64.
[11] 管宇, 周绪红, 卫世杰, 石宇. 冷弯薄壁型钢组合楼盖振动性能及静力挠度研究[J]. 工程力学, 2018, 35(5): 131-142.
[12] 李天, 晁进涛, 樊嘉. 等腰三角形空间桁架自由扭转理论分析和试验研究[J]. 工程力学, 2018, 35(5): 223-230,238.
[13] 初明进, 张庆池, 刘继良, 邱臻, 王琳, 谢天宇. 配置不同水平钢筋的自适应分缝剪力墙受剪性能试验研究[J]. 工程力学, 2018, 35(2): 214-220.
[14] 杨青顺, 甄伟, 陆新征, 解琳琳, 林楷奇. 带端部阻尼器伸臂桁架的抗震性能试验研究[J]. 工程力学, 2018, 35(2): 47-58.
[15] 杜新喜, 胡锐, 袁焕鑫, 程晓燕, 宗亮. 混合配筋预应力混凝土管桩抗剪性能试验研究[J]. 工程力学, 2018, 35(12): 71-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张冬娟;崔振山;李玉强;阮雪榆. 平面应变板料拉弯成形回弹理论分析[J]. 工程力学, 2007, 24(7): 0 -071 .
[2] 于琦;孟少平;吴京;郑开启. 预应力混凝土结构组合式非线性分析模型[J]. 工程力学, 2011, 28(11): 130 -137 .
[3] 顾致平;和兴锁;方同. 微分对接条件对次谐共振影响的研究[J]. 工程力学, 2006, 23(4): 62 -66 .
[4] 李艺;赵文;张延年. 系统刚度可靠性分析的加速算法[J]. 工程力学, 2006, 23(3): 17 -20 .
[5] 熊渊博;龙述尧;胡德安. 薄板屈曲分析的局部Petrov-Galerkin方法[J]. 工程力学, 2006, 23(1): 23 -27 .
[6] 罗战友;夏建中;龚晓南. 不同拉压模量及软化特性材料的球形孔扩张问题的统一解[J]. 工程力学, 2006, 23(4): 22 -27 .
[7] 纵智育;辛克贵;王珊. 张力膜结构初始形态分析的曲面四边形单元[J]. 工程力学, 2006, 23(3): 32 -36,2 .
[8] 李永莉;赵志岗;侯志奎. 卷积型加权残值法求解薄板的动力学问题[J]. 工程力学, 2006, 23(1): 43 -46 .
[9] 钟阳;张永山. 矩形悬臂厚板的解析解[J]. 工程力学, 2006, 23(2): 52 -55,4 .
[10] 李雷;谢水生;黄国杰. 应变梯度塑性理论下超薄梁弯曲中尺度效应的数值研究[J]. 工程力学, 2006, 23(3): 44 -48 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日