工程力学 ›› 2019, Vol. 36 ›› Issue (5): 148-156,175.doi: 10.6052/j.issn.1000-4750.2018.04.0216

• 土木工程学科 • 上一篇    下一篇

软土地区侧压损失对盾构隧道受力及变形的影响

梁东, 金浩, 肖军华, 周顺华   

  1. 1. 同济大学道路与交通工程教育部重点实验室, 上海 201804;
    2. 上海市轨道交通结构耐久与系统安全重点实验室, 上海 201804
  • 收稿日期:2018-04-10 修回日期:2018-09-10 出版日期:2019-05-25 发布日期:2019-02-22
  • 通讯作者: 金浩(1986-),男,浙江诸暨人,助理教授,博士,从事地下铁道结构耐久性研究(E-mail:jinhao@tongji.edu.cn). E-mail:jinhao@tongji.edu.cn
  • 作者简介:梁东(1994-),男,甘肃兰州人,硕士生,主要从事地下结构与岩土工程研究(E-mail:18817871081@163.com);肖军华(1980-),男,湖北仙桃人,教授,博士,博导,主要从事轨道交通土工结构研究(E-mail:jhxiao@tongji.edu.cn);周顺华(1964-),男,浙江江山人,教授,博士,博导,主要从事地下与隧道工程研究(E-mail:zhoushh@tongji.edu.cn).
  • 基金资助:
    国家重点研发计划项目(2017YFB1201204)

INFLUENCE OF LATERAL PRESSURE LOSS ON THE FORCE AND DEFORMATION OF SHIELD TUNNEL IN SOFT SOIL AREA

LIANG Dong, JIN Hao, XIAO Jun-hua, ZHOU Shun-hua   

  1. 1. Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai 201804, China;
    2. Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Tongji University, Shanghai 201804, China
  • Received:2018-04-10 Revised:2018-09-10 Online:2019-05-25 Published:2019-02-22

摘要: 针对软土地区地铁沿线工程活动导致盾构隧道收敛变形增大的问题,采用1:10相似模型试验和精细化3D有限元模拟相结合的方法,研究了侧向压力损失对盾构隧道结构处于弹性阶段与塑性阶段的受力及变形的影响规律。研究结果表明:当侧向压力损失较小时,侧向压力损失与盾构隧道径向变形之间呈线性关系,盾构隧道结构处于弹性阶段;当侧向压力损失增大时,侧向压力损失与盾构隧道径向变形之间呈指数型关系,盾构隧道结构进入塑性阶段;增大管片厚度能有效提升管片的抗变形能力,但抗变形能力会随厚度增大而趋于平缓;从混凝土结构偏心受力的角度分析,盾隧道管片厚度增大会导致结构从小偏心受压向大偏心受压转变,但从结构应力/应变的角度分析,管片的最大应变值减小,从而使盾构隧道结构处于更安全的受力状态。

关键词: 盾构隧道, 侧向卸载, 相似模型试验, 有限元方法, 管片厚度

Abstract: To study the problem that construction activities adjacent to metro tunnels in soft soil area could lead to increasement of segment deformation, a combination approach of model test and finite element simulation is adopted to study the force and deformation of shield tunnel structure at both elastic stage and plastic stage induced by lateral pressure loss. The results showed that:when the lateral pressure loss of shield tunnel is small, the segment deformation increases linearly, shield tunnel structure is still at elastic stage; when the lateral pressure loss becomes large, the segment deformation increases exponentially, and the shield tunnel structure changes into the range of plasticity. Increasing the thickness of segment can effectively improve the anti-deformation capacity of shield tunnel, but the improvement will become less effective with the increasement of segment thickness. From the perspective of structural eccentric loading state, increasing the thickness of segment will change the stress state from small eccentric compressive state into large eccentric compressive state. However, from the perspective of structural stress and strain, the maximum strain of segment will decrease, which makes the shield tunnel structure a more secure state of stress.

Key words: shield tunnel, lateral unloading, model test, finite element method, segment thickness

中图分类号: 

  • U455.43
[1] 周顺华. 城市轨道交通结构设计与施工[M]. 北京:人民交通出版社, 2011:16. Zhou Shunhua. Structural design and construction in urban mass transit[M]. Beijing:China Communications Press, 2011:16. (in Chinese)
[2] 陈仁朋, 王诚杰, 鲁立, 等. 开挖对地铁盾构隧道影响及控制措施[J]. 工程力学, 2017, 34(12):1-13. Chen Renpeng, Wang Chengjie, Lu Li, et al. Influence of excavation on exist metro shield tunnel and control measures[J]. Engineering Mechanics, 2017, 34(12):1-13. (in Chinese)
[3] 温科伟, 刘树亚, 杨红坡. 基于小应变硬化土模型的基坑开挖对下穿地铁隧道影响的三维数值模拟分析[J]. 工程力学, 2018, 35(增刊1):80-87. Wen Kewei, Liu Shuya, Yang Hongpo. Threedimensional numerical simulation analysis of the influence of pit excavation based on hardening soil-small strain model on metro tunnel[J]. Engineering Mechanics, 2018, 35(Suppl 1):80-87. (in Chinese)
[4] 葛世平, 谢东武, 丁文其. 大面积加卸载对软土地铁隧道的影响[J]. 土木工程学报, 2011, 44(增刊2):127-130. Ge Shiping, Xie Dongwu, Ding Wenqi. Effects of loading and unloading large-scale area loadacting on soft soil metro line[J]. China Civil Engineering Journal, 2011, 44(Suppl 2):127-130. (in Chinese)
[5] 刘建航, 侯学渊. 盾构法隧道[M]. 北京:中国铁道出版社, 1991:104. Liu Jianhang, Hou Xueyuan. Shield tunnel[M]. Beijing:China Railway Publish House, 1991:104. (in Chinese)
[6] 柳献, 张浩立, 鲁亮, 等. 卸载工况下盾构隧道结构承载能力的试验研究[J]. 城市轨道交通研究, 2015, 18(5):38-43. Liu Xian, Zhang Haoli, Lu Liang, et al. Experiment of the bearing capacity of shield tunnel in unloading conditions[J]. Underground Engineering and Tunnels, 2015, 18(5):38-43. (in Chinese)
[7] 刘四进, 封坤, 何川, 等. 大断面盾构隧道管片接头抗弯力学模型研究[J]. 工程力学, 2015, 32(12):215-224. Liu Sijin, Feng Kun, He Chuan, et al. Study on the bending mechanical model of segmental joint in shield tunnel with large cross-section[J]. Engineering Mechanics, 2015, 32(12):215-224. (in Chinese)
[8] 封坤, 何川, 邹育麟. 大断面越江盾构隧道管片拼装方式对结构内力的影响效应研究[J]. 工程力学, 2012, 29(6):114-124. Feng Kun, He Chuan, Zou Yulin. Study on the effect of assembling method on the innerforce of segmental lining for cross-river shield tunnel with large cross-section[J]. Engineering Mechanics, 2012, 29(6):114-124. (in Chinese)
[9] Blom C B M, van der Horst E J, Jovanovic P S. Three-dimensional structural analyses of the shield-driven "Green Heart" tunnel of the high-speed line South[J]. Tunnelling and Underground Space Technology, 1999, 14(2):217-224.
[10] Liu X, Liu Z, Ye Y, et al. Mechanical behavior of quasi-rectangular segmental tunnel linings:Further insights from full-scale ring tests[J]. Tunnelling and Underground Space Technology, 2018, 79:304-318.
[11] 鞠杨, 徐广泉, 毛灵涛, 等. 盾构隧道衬砌结构应力与变形的三维数值模拟与模型试验研究[J]. 工程力学, 2005, 22(3):157-165. Ju Yang, Xu Guangquan, Mao Lingtao, et al. 3D numerical simulation of stress and strain properties of concrete shield tunnel lining and modeling experiments[J]. Engineering Mechanics, 2005, 22(3):157-165. (in Chinese)
[12] 叶飞, 杨鹏博, 毛家骅, 等. 基于模型试验的盾构隧道纵向刚度分析[J]. 岩土工程学报, 2015, 37(1):83-90. Ye Fei, Yang Pengbo, Mao Jiahua, et al. Longitudinal rigidity of shield tunnels based on model tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1):83-90. (in Chinese)
[13] 王士民, 申兴柱, 何祥凡, 等. 不同拼装方式下盾构隧道管片衬砌受力与破坏模式模型试验研究[J]. 土木工程学报, 2017, 50(6):114-124. Wang Shimin, Shen Xingzhu, He Xiangfan, et al. A model test for the mechanical property and failure mode of lining segments with different assembly types of shield tunnel[J]. China Civil Engineering Journal, 2017, 50(6):114-124. (in Chinese)
[14] 黄大维, 周顺华, 王秀志, 等. 模型盾构隧道管片纵缝接头设计方法[J]. 岩土工程学报, 2015, 37(6):1068-1076. Huang Dawei, Zhou Shunhua, Wang Xiuzhi, et al. Design method for longitudinal segment joints of shield tunnel model[J]. Rock and Soil Mechanics, 2015, 37(6):1068-1076. (in Chinese)
[15] 徐国文, 王士民, 汪冬兵. 基于接头抗弯刚度非线性的壳-弹簧-接触-地层模型的建立[J]. 工程力学, 2016, 33(12):158-166. Xu Guowen, Wang Shimin, Wang Dongbing. Shell-spring-contact-ground model based on segment joint stiffness nonlinearity[J]. Engineering Mechanics, 2016, 33(12):158-166. (in Chinese)
[16] CJJ/T 202-2013, 城市轨道交通结构安全保护技术规范[S]. 北京:中国建筑工业版社, 2014. CJJ/T 202-2013, Technical code for protection structures of urban rail transit[S]. Beijing:China Architecture & Building Press, 2014. (in Chinese)
[17] 黄钟晖, 廖少明, 刘国彬. 上海软土盾构法隧道管片厚度的优化[J]. 岩土力学, 2000, 21(4):326-330. Huang Zhonghui, Liao Shaoming, Liu Guobin. The optimization of the segment thickness of shield tunnel in Shanghai soft soils[J]. Rock and Soil Mechanics, 2000, 21(4):326-330. (in Chinese)
[1] 栗志杰, 由小川, 柳占立, 庄茁, 杨策. 基于三维头部数值模型的颅脑碰撞损伤机理研究[J]. 工程力学, 2019, 36(5): 246-256.
[2] 解江, 张雪晗, 苏璇, 牟浩蕾, 周建, 冯振宇, 蓝元沛. 铺层顺序对复合材料薄壁圆管轴向压溃吸能特性的影响研究[J]. 工程力学, 2018, 35(6): 231-239.
[3] 李珂, 葛耀君, 赵林, 夏锦林. 大跨度斜拉桥气弹模型对结构静风响应的反应能力的数值研究[J]. 工程力学, 2018, 35(3): 79-85.
[4] 张景, 何川, 耿萍, 陈枰良, 卢志楷. 盾构隧道环间接头弯曲状态非线性研究[J]. 工程力学, 2018, 35(11): 35-44.
[5] 狄勤丰, 宋海涛, 陈锋, 王文昌, 张鹤, 靳泽中. 复杂载荷下油井管接头数值仿真平台的研发与应用[J]. 工程力学, 2017, 34(增刊): 295-299.
[6] 刘喆, 何平, 张安琪, 陈铮. 盾构隧道施工过程及支护方式对高速铁路高架桥群桩基础影响分析[J]. 工程力学, 2016, 33(增刊): 219-226.
[7] 谷良贤, 王一凡. 几何非线性假设下温度大范围变化瞬态热力耦合问题研究[J]. 工程力学, 2016, 33(8): 221-230.
[8] 李晓军, 黄伯麒, 朱合华, 洪弼宸. 基于柔度法梁模型的盾构隧道衬砌结构纵向变形计算方法[J]. 工程力学, 2016, 33(4): 157-165,187.
[9] 王文杰, 张磊, 林峰. 预应力钢丝缠绕“正交预紧机架”刚度比计算方法研究[J]. 工程力学, 2016, 33(3): 214-221,247.
[10] 徐国文, 王士民, 汪冬兵. 基于接头抗弯刚度非线性的壳-弹簧-接触-地层模型的建立[J]. 工程力学, 2016, 33(12): 158-166.
[11] 晏启祥,张煜,王春艳,耿萍. 剪切波作用下盾构隧道地震效应的拟静力分析方法研究[J]. 工程力学, 2015, 32(5): 184-191.
[12] 刘四进, 封坤, 何川, 何政树. 大断面盾构隧道管片接头抗弯力学模型研究[J]. 工程力学, 2015, 32(12): 215-224.
[13] 韦凯, 翟婉明, 肖军华. 软土地铁盾构隧道垂向随机振动分析模型[J]. 工程力学, 2014, 31(6): 117-123.
[14] 张海顺,姜忻良,张亚楠. 高架桥-地铁站-桩-土复杂结构体系地震反应分析[J]. 工程力学, 2013, 30(增刊): 53-58.
[15] 张建刚,何川. 盾构隧道衬砌整环力学机理模型[J]. 工程力学, 2013, 30(7): 136-141,146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈云, 蒋欢军, 刘涛, 万志威, 鲁正. 分级屈服型金属阻尼器抗震性能研究[J]. 工程力学, 2019, 36(3): 53 -62 .
[2] 张凌凯, 王睿, 张建民, 唐新军. 不同应力路径下堆石料的动力变形特性试验研究[J]. 工程力学, 2019, 36(3): 114 -120,130 .
[3] 余朔, 金浩, 周顺华, 毕湘利. 氯离子及迷流共同作用下持荷盾构管片钢筋锈层形态 [J]. 工程力学, 0, (): 0 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日