工程力学 ›› 2019, Vol. 36 ›› Issue (7): 126-135,173.doi: 10.6052/j.issn.1000-4750.2018.04.0191

• 土木工程学科 • 上一篇    下一篇

纤维增韧轻骨料混凝土单轴受压应力-应变全曲线试验研究

魏慧, 吴涛, 杨雪, 刘喜   

  1. 长安大学建筑工程学院, 陕西, 西安 710061
  • 收稿日期:2018-04-02 修回日期:2018-08-31 出版日期:2019-07-06 发布日期:2019-07-06
  • 通讯作者: 吴涛(1976-),男,安徽霍山人,教授,工学博士,院长,从事工程结构抗震性能研究(E-mail:wutao@chd.edu.cn). E-mail:wutao@chd.edu.cn
  • 作者简介:魏慧(1990-),女,新疆巴楚人,讲师,工学博士,从事工程结构抗震性能研究(E-mail:weihuichd@163.com);杨雪(1994-),女,陕西西安人,博士生,从事钢筋混凝土结构抗震研究(E-mail:ms_yangxue@163.com);刘喜(1986-),男,陕西延安人,副教授,工学博士,从事工程结构抗震性能研究(E-mail:lliuxii@163.com).
  • 基金资助:
    国家自然科学基金项目(51878054,51578072,51708036);陕西省自然科学基金项目(2017JQ5092);中央高校基本科研业务费项目(300102288401)

Experimental study on stress-strain relationship of fiber reinforced lightweight aggregate concrete

WEI Hui, WU Tao, YANG Xue, LIU Xi   

  1. School of Civil Engineering, Chang'an University, Xi'an, Shaanxi 710061, China
  • Received:2018-04-02 Revised:2018-08-31 Online:2019-07-06 Published:2019-07-06

摘要: 为探究纤维增韧后轻骨料混凝土应力-应变全曲线,完成了不同混凝土强度等级、纤维种类及掺量下的9组棱柱体单轴受压试验,分析了破坏过程和破坏特征,系统研究了各因素对峰值应力、峰值应变和弹性模量的影响,并结合已有研究给出了各曲线特征点计算模型,考虑纤维轻骨料混凝土自身特征,建立了分段式纤维轻骨料混凝土应力-应变全曲线模型。研究表明:轻骨料混凝土破坏特征与普通混凝土显著不同,掺入纤维有效抑制了其内部微裂缝的开展,起到阻裂、增韧的效果,且随混凝土强度等级、纤维种类及掺量变化差异明显;纤维增韧后试件的应力-应变曲线下降段坡度趋于平缓,脆性得到有效改善;建议的应力-应变全曲线模型与试验结果吻合良好,能够准确描述纤维增韧轻骨料混凝土在单轴受压作用下的受力变形特征。

关键词: 轻骨料混凝土, 纤维增韧, 峰值应力, 弹性模量, 应力-应变曲线模型

Abstract: An experimental study of nine-group prism specimens with different concrete strength, fiber type and fiber dosage has been carried out to understand the stress-strain relationship of fiber reinforced lightweight aggregate concrete (LWAC) under axial compression load. Failure process and failure characteristics of the specimens were analyzed, and the effect of test variables on the peak stress, peak strain and elastic modulus were studied. Combining with the existing research, calculation formulas of the feature points on test curves were derived. Simultaneously, a segment-based stress-strain model was proposed considering the characteristics of fiber reinforced LWAC. Test results indicate that the failure characteristics of LWAC are significantly different from that of the normal weight concrete. Incorporating fibers into LWAC can effectively restrict the formation of internal micro-cracks, resulting in a prominent crack-resisting and enhancing toughness effect. But these benefits varied slightly with the test variables such as concrete strength, fiber type and fiber dosage. Combining fibers with LWAC can also effectively flatten the decreasing slope of stress-strain curves and improve the brittleness of LWAC. Simulation results obtained from the proposed stress-strain model agree well with the test results, which indicates that this proposed model can accurately describe the axial compressive behavior of fiber reinforced LWAC.

Key words: lightweight aggregate concrete, fiber reinforced, peak stress, elastic modulus, stress-strain curve model

中图分类号: 

  • TU528.572
[1] JGJ 12-2006, 轻骨料混凝土结构技术规程[S]. 北京:中国建筑工业出版社, 2006. JGJ 12-2006, Technical specification for lightweight aggregate concrete structures[S]. Beijing:China Architecture & Building Press, 2006. (in Chinese)
[2] ACI Committee 318, Building code requirement for structural concrete (ACI 318-14) and commentary (ACI 318R-14), American Concrete Institute, 2014.
[3] Wang P T, Shah S P, Naaman A E. Stress-strain curves of normal and lightweight concrete in compression[C]//ACI Journal Proceedings,1978, 75(11):603-611.
[4] 叶列平, 孙海林, 陆新征, 等. 高强轻骨料混凝土结构性能、分析与计算[M]. 北京:科学出版社, 2009:1-4. Ye Lieping, Sun Hailin, Lu Xinzheng, et al.High-strength lightweight reinforced concrete structure performance、analysis and calculation[M]. Beijing:Science Press, 2009:1-4. (in Chinese)
[5] JGJ 51-2002, 轻骨料混凝土技术规程[S]. 北京:中国建筑工业出版社, 2002. JGJ 51-2002, Technical specification for lightweight aggregate concrete[S]. Beijing:China Architecture & Building Press, 2002. (in Chinese)
[6] 李平江, 刘巽伯. 高强页岩陶粒混凝土的基本力学性能[J]. 建筑材料学报, 2004, 7(1):113-116. Li Pingjiang, Liu Xunbo. Fundamental mechanical properties of concrete with high strength expanded shale[J]. Journal of Building Materials, 2004, 7(1):113-116. (in Chinese)
[7] 叶家军. 高强轻集料混凝土构件优化设计与性能研究[D]. 武汉:武汉理工大学, 2005. Ye Jiajun. Optimization design and performance study of high-strength lightweight aggregate concrete members[D]. Wuhan:Wuhan University of Technology, 2005. (in Chinese)
[8] 程智清. 高性能页岩轻集料混凝土试验研究[D]. 长沙:中南大学, 2007. Cheng Zhiqing. Experimental study on high performance lightweight aggregate concrete with expanded shale[D]. Changsha:Central South University, 2007. (in Chinese)
[9] 程领. LC50轻骨料混凝土配合比设计及性能研究[D]. 长沙:长沙理工大学, 2013. Cheng Ling. Design of mixture proportions and study on performance of LC50 lightweight aggregate concretes[D]. Changsha:Changsha University of Science & Technology, 2013. (in Chinese)
[10] 陈岩. 高强轻骨料混凝土配合比设计及性能研究[D]. 长春:吉林大学, 2007. Chen Yan. Mix design and performance study of high-strength lightweight aggregate concrete[D]. Changchun:Jilin University, 2007. (in Chinese)
[11] 喻骁. 高强页岩陶粒制备及其混凝土性能研究[D]. 重庆:重庆大学, 2004. Yu Xiao. Research on high-strength shale aggregate's preparation and property for aggregate concrete[D]. Chongqing:Chongqing University, 2004. (in Chinese)
[12] 李文斌. 陶粒轻集料高性能混凝土的试验研究[D]. 西安:西安建筑科技大学, 2012. Li Wenbin. Research on the light-weight haydite aggregate concrete[D]. Xi'an:Xi'an University of Architecture and Technology, 2012. (in Chinese)
[13] 曲树强. 粉煤灰陶粒混凝土力学性能与板的受力性能试验研究[D]. 包头:内蒙古科技大学, 2012. Qu Shuqiang. Experimental study on the mechanical properties of fly ash ceramic concrete and slab[D]. Baotou:Inner Mongolia University of Science and Technology, 2012. (in Chinese)
[14] 张爱军. 钢纤维轻骨料混凝土物理力学性能及韧性的试验研究[D]. 呼和浩特:内蒙古农业大学, 2008. Zhang Aijun. Experimental study on the mechanical properties of steel fiber reinforced lightweight aggregate concrete[D]. Huhhot:Inner Mongolia Agricultural University, 2008. (in Chinese)
[15] 陈连发, 陈悦, 李龙, 等. 高性能轻集料混凝土的力学性能研究[J]. 硅酸盐通报, 2015, 34(10):2822-2828. Chen Lianfa, Chen Yue, Li Long, et al. Mechanical property of high performance lightweight aggregate concrete[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(10):2822-2828. (in Chinese)
[16] 曾志兴. 钢纤维轻骨料混凝土力学性能的试验研究及损伤断裂分析[D]. 天津:天津大学, 2003. Zeng Zhixin. Experimental study on the mechanical properties of steel fiber reinforced lightweight aggregate concrete[D]. Tianjin:Tianjin University, 2003(in Chinese)
[17] 沈泽. 钢纤维轻骨料粉煤灰混凝土基本力学性能试验研究[D]. 郑州:华北水利水电大学, 2015. Shen Ze. Experimental study on basic mechanical properties of steel fiber reinforced lightweight fly-ash concrete[D]. Zhengzhou:North China University of Water Resources and Electric Power, 2015. (in Chinese)
[18] 徐丽丽. 纤维轻骨料混凝土力学性能及微观结构试验研究[D]. 呼和浩特:内蒙古农业大学, 2012. Xu Lili. Study of fiber lightweight aggregate concrete mechanical properties and microstructure experimental[D]. Huhhot:Inner Mongolia Agricultural University, 2012. (in Chinese)
[19] 王海龙. 轻骨料混凝土早期力学性能与抗冻性能的试验研究[D]. 呼和浩特:内蒙古农业大学, 2009. Wang Hailong. The study on early mechanics and frost resistance of lightweight aggregate concrete[D]. Huhhot:Inner Mongolia Agricultural University, 2009. (in Chinese)
[20] Ahmad S H, Shah S P. Complete triaxial stress-strain curves for concrete[J]. Journal of the Structural Division, ASCE, 1982, 108(4):728-742.
[21] Smeplass S. High strength concrete:mechanical properties-Iwa Concretes[R]. Trondheim:SINTEF, 1992:45-53.
[22] Slate F O, Nilson A H, Martinez S. Mechanical properties of high-strength lightweight concrete[C]//ACI Journal Proceedings, 1986, 83(4):606-613.
[23] Tasdemir M A. Elastic and inelastic behaviour of structural lightweight aggregate concretes[D]. Istanbul:Istanbul Technical University, 1982.
[24] Ahmad S H, Shah S P. Behavior of hoop confined concrete under high strain rates[C]//ACI Journal Proceedings, 1985, 82(5):634-647.
[25] Almusallam T H, Alsayed S H. Stress-strain relationship of normal, high-strength and lightweight concrete[J]. Magazine of Concrete Research, 1995, 47(170):39-44.
[26] Yildirim H. Effects of composition on the mechanical behaviour of semi-lightweight concretes under cyclic loading conditions[D]. Istanbul:Istanbul Technical University, 1989.
[27] Cui H Z, Lo T Y, Memon S A, et al. Experimental investigation and development of analytical model for pre-peak stress-strain curve of structural lightweight aggregate concrete[J]. Construction and Building Materials, 2012, 36(11):845-859.
[28] Kayali O, Haque M N, Zhu B. Some characteristics of high strength fiber reinforced lightweight aggregate concrete[J]. Cement and Concrete Composites, 2003, 25(2):207-213.
[29] Richart F E, Jensen V P. Tests of plain and reinforced concrete made with haydite aggregates[R]. Illinois:University of Illinois at Urbana-Champaign in cooperation with the Western Brick Company, 1931:67-82.
[30] Shah S P, Naaman A E, Moreno J. Effect of confinement on the ductility of lightweight concrete[J]. International Journal of Cement Composites and Lightweight Concrete, 1983, 5(1):15-25.
[31] Shannag M J. Characteristics of lightweight concrete containing mineral admixtures[J]. Construction and Building Materials, 2011, 25(2):658-662.
[32] Zhang M H, Gjvorv O E. Mechanical properties of high-strength lightweight concrete[J]. ACI Materials Journal, 1991, 88(3):240-247.
[33] Kaar P H, Hanson N W, Capell H T. Stress-strain characteristics of high-strength concrete[J]. ACI Structural Journal, 1978, 55:161-186.
[34] Carreira D J, Chu K H. Stress-strain relationship for plain concrete in compression[J]. ACI Journal, 1985, 82(6):797-804.
[35] Wee T H, Chin M S, Mansur M A. Stress-Strain relationship of high-strength concrete in compression[J]. Journal of Materials in Civil Engineering, 1996, 8(2):70-76.
[36] Yang K H, Mun J H, Cho M S, et al. Stress-strain model for various unconfined concretes in compression[J]. ACI Materials Journal, 2014, 111(4):673-685.
[37] 过镇海, 张秀琴, 张达成, 等. 混凝土应力-应变全曲线的试验研究[J]. 建筑结构学报, 1982, 3(1):3-14. Guo Zhenghai, Zhang Xiuqin, Zhang Dacheng, et al. Experimental investigation of complete stress-strain curve of concrete[J]. Journal of Building Structures, 1982, 3(1):3-14. (in Chinese)
[1] 马康, 程晓辉. 孔隙固体超弹性本构模型与应用[J]. 工程力学, 2019, 36(7): 248-256.
[2] 叶艳霞, 张志银, 刘月, 张春苗. 基于弹头型屈服的轻骨料混凝土强度准则[J]. 工程力学, 2019, 36(1): 138-145.
[3] 钟铭. 既有结构混凝土累积损伤原位评估方法[J]. 工程力学, 2018, 35(S1): 278-286.
[4] 余波, 陶伯雄, 刘圣宾. 一种箍筋约束混凝土峰值应力的概率模型[J]. 工程力学, 2018, 35(9): 135-144.
[5] 张振宇, 万璐, 冯吉利. 带有橡胶垫层的混凝土接触特性试验及其内聚力模型[J]. 工程力学, 2018, 35(8): 55-66.
[6] 吴涛, 魏慧, 刘喜, 刘全威. 箍筋约束高强轻骨料混凝土柱轴压性能试验研究[J]. 工程力学, 2018, 35(2): 203-213.
[7] 刘喜, 吴涛, 魏慧, 张玉. 基于能量损失平衡的轻骨料混凝土深受弯构件受剪分析[J]. 工程力学, 2017, 34(9): 211-219.
[8] 牛建刚, 郝吉, 孙立斌, 李伯潇. 塑钢纤维轻骨料混凝土与钢筋粘结锚固试验研究[J]. 工程力学, 2017, 34(2): 42-49.
[9] 郑山锁, 程明超, 宋哲盟, 马德龙. 酸雨对再生骨料混凝土实心砖砌体抗压性能影响试验研究[J]. 工程力学, 2017, 34(2): 94-101.
[10] 金生吉,李忠良,张健,王艳苓. 玄武岩纤维混凝土腐蚀条件下抗冻融性能试验研究[J]. 工程力学, 2015, 32(5): 178-183.
[11] 魏亚,姚湘杰. 早龄期水泥混凝土拉伸徐变实测与模型[J]. 工程力学, 2015, 32(3): 104-109.
[12] 倪海江,徐卫亚,石安池,徐建荣,吉华. 基于离散元的柱状节理岩体等效弹性模量尺寸效应研究[J]. 工程力学, 2015, 32(3): 90-96.
[13] 刘喜, 吴涛, 魏慧, 刘伯权, 邢国华. 高强轻骨料混凝土深受弯构件受剪模型分析[J]. 工程力学, 2015, 32(12): 108-116.
[14] 吕岩松, 郭日修. 计算加肋轴对称组合壳塑性极限载荷的缩减弹性模量有限元法[J]. 工程力学, 2014, 31(增刊): 171-176,176.
[15] 李响, 谢剑, 吴洪海. 超低温环境下混凝土本构关系试验研究[J]. 工程力学, 2014, 31(增刊): 195-200.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日