工程力学 ›› 2019, Vol. 36 ›› Issue (11): 62-71.doi: 10.6052/j.issn.1000-4750.2018.04.0190

• 土木工程学科 • 上一篇    下一篇

高延性混凝土偏心受压柱正截面受力性能试验研究

邓明科1, 李睿喆1, 张阳玺1, 闵秀明2   

  1. 1. 西安建筑科技大学土木工程学院, 西安 710055;
    2. 中冶集团武汉勘察研究院有限公司, 武汉 430080
  • 收稿日期:2018-04-02 修回日期:2018-12-14 出版日期:2019-11-13 发布日期:2019-04-10
  • 通讯作者: 邓明科(1979-),男,四川南充人,教授,博士,主要从事新材料与结构加固研究(E-mail:dengmingke@126.com). E-mail:dengmingke@126.com
  • 作者简介:李睿喆(1993-),男,河南新乡人,硕士生,主要从事新材料与结构加固研究(E-mail:leerythe@163.com);张阳玺(1990-),男,四川安岳人,博士生,主要从事新材料与结构加固研究(E-mail:18829588343@163.com);闵秀明(1991-),男,湖北广水人,硕士生,主要从事新材料与结构加固研究(E-mail:547353387@qq.com).
  • 基金资助:
    国家自然科学基金项目(51578445)

EXPERIMENTAL STUDY ON MECHANICAL BEHAVIOR OF HIGH DUCTILE CONCRETE MEMBERS UNDER ECCENTRIC COMPRESSION

DENG Ming-ke1, LI Rui-zhe1, ZHANG Yang-xi1, MIN Xiu-ming2   

  1. 1. School of Civil Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China;
    2. Wuhan Surveying-Geotechnical Research Institute Co., Ltd of MCC, Wuhan 430080, China
  • Received:2018-04-02 Revised:2018-12-14 Online:2019-11-13 Published:2019-04-10

摘要: 为研究高延性混凝土(HDC)偏心受压柱的受力性能,进行了6个HDC试件和2个RC试件的偏心受压试验,研究HDC偏压柱的破坏形态、承载力及变形能力。试验结果表明:采用HDC替换混凝土可明显改善小偏心受压柱的脆性破坏,提高构件发生小偏心受压破坏的变形能力;相对于RC大偏心受压柱,HDC大偏心受压柱表现出较好的裂缝控制能力,破坏时受拉区裂缝均匀而细密;随着偏心距增大,HDC偏压构件的承载力降低,变形能力提高。正截面受力分析表明:HDC偏心受压构件的相对界限受压区高度均大于RC构件,更有利于高强钢筋的力学性能发挥;考虑HDC受拉作用的偏心受压构件正截面承载力计算结果与试验值吻合良好。该文研究结果可为HDC偏心受压构件截面设计提供试验依据和理论基础。

关键词: 高延性混凝土, 偏心受压构件, 偏心距, 变形能力, 相对界限受压区高度, 承载力

Abstract: In order to study the mechanical properties of eccentric compression columns of high ductile concrete (HDC), the eccentric compression tests of 6 HDC specimens and 2 RC specimens were carried out. The failure mode, bearing capacity and deformability of the HDC column are studied. The experimental results show that replacing concrete with HDC can obviously mitigate the brittle failure of small eccentric columns and improve the deformation capacity of members with small eccentricity and compression failure. Compared with the RC large eccentric columns, the HDC large eccentric compression columns show better crack control ability, and the cracks of tension zone are uniformly distributed and tiny. With the increasing of eccentricity, the bearing capacity of the HDC eccentric compression members is reduced and the deformation capacity is improved. The mechanical analysis of the normal section shows that the bounding relative height of compression zone of the HDC eccentric compression member is higher than that of the RC members and is more beneficial to the mechanical performance of high strength steel bar. Considering the HDC tensile effect, the bearing capacity of the HDC eccentric compression member is in good agreement with the test results. The results of this paper provide experimental support and theoretical basis for the design of HDC eccentric compression members.

Key words: high ductile concrete (HDC), eccentric compression member, eccentricity, deformability, bounding relative height of compression zone, bearing capacity

中图分类号: 

  • TU375.3
[1] Li V C, Wang S, Wu C. Tensile strain-hardening behavior of PVA-ECC[J]. ACI Mater J, 2001, 98(6):483-492.
[2] Li V C. On engineered cementitious composites (ECC):A review of the material and its applications[J]. Advance Concrete Technology, 2003, 1(3):215-230.
[3] Li V C. Engineered cementitious composites Tailored composites through micromechanical modeling.[C]//Banthia N, Bentur A, Mufti A. Fiber reinforced concrete:Present and the future. Montreal:Canadian Society for Civil Engineering, 1998:64-97.
[4] Li V C, Leung C K Y. Steady state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, ASCE, 1992, 188(11):2246-2264.
[5] 寇佳亮, 邓明科, 梁兴文. 延性纤维增强混凝土单轴拉伸性能试验研究[J]. 建筑结构, 2013, 43(1):59-64. Kou Jialiang, Deng Mingke, Liang Xingwen. Experimental study of uniaxial tensile properties of ductile fiber reinforced concrete[J]. Building Structure, 2013, 43(1):59-64. (in Chinese)
[6] 邓明科,刘海勃,秦萌,等. 高延性纤维混凝土抗压韧性试验研究[J]. 西安建筑科技大学学报(自然科学版), 2015, 47(5):660-665. Deng Mingke, Liu Haibo, Qin Meng, et al. Experimental research on compressive toughness of the high ductile fiber reinforced concrete[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2015, 47(5):660-665. (in Chinese)
[7] 邓明科, 卜新星, 潘姣姣, 等. 型钢高延性混凝土短柱抗震性能试验研究[J]. 工程力学, 2017, 34(1):163-170. Deng Mingke, Bu Xinxing, Pan Jiaojiao, et al. Experimental study on seismic behavior of steel reinforced high ductile concrete short columns[J]. Engineering Mechanics, 2017, 34(1):163-170. (in Chinese)
[8] 邓明科, 张辉, 梁兴文, 等. 高延性纤维混凝土短柱抗震性能试验研究[J]. 建筑结构学报, 2015, 36(12):62-69. Deng Mingke, Zhang Hui, Liang Xingwen, et al. Experimental study on seismic behavior of high ductile fiber reinforced concrete short column[J]. Journal of Building Structures, 2015, 36(12):62-69. (in Chinese)
[9] 邓明科, 卢化松, 杨开屏, 等. 型钢高延性混凝土短梁抗剪性能试验研究[J]. 建筑结构学报, 2015, 36(10):73-80.Deng Mingke, Lu Huasong, Yang Kaiping, et al. Experimental study on shear behavior of steel reinforced high ductile concrete short beams[J]. Journal of Building Structures, 2015, 36(10):73-80. (in Chinese)
[10] 邓明科, 方超, 代洁, 等. 高延性纤维混凝土低矮剪力墙抗震性能试验研究[J]. 建筑结构, 2017, 47(2):57-63. Deng Mingke, Fang Chao, Dai Jie, et al. Experimental study on seismic behavior of high ductile fib-er reinforced concrete low-rise shear walls[J]. Building Structure, 2017, 47(2):57-63. (in Chinese)
[11] 代洁, 邓明科, 陈佳莉. 基于材料延性的高延性混凝土无腹筋梁受剪性能试验研究[J]. 工程力学, 2018, 35(2):124-132. Dai Jie, Deng Mingke, Chen Jiali. Experimental study on the shear behavior of high ductile fiber reinforced concrete beams without stirrups[J] Engineering Mechanics, 2018, 35(2):124-132.
[12] 邓明科, 樊鑫淼, 高晓军, 等. ECC面层加固受损砖砌体墙抗震性能试验研究[J]. 工程力学, 2015, 32(4):120-129. Deng Mingke, Fan Xinmiao, Gao Xiaojun, et al. Experimental Investigation on seismic behavior of damaged brick masonry wall strengthened with ECC splint[J]. Engineering Mechanics, 2015, 32(4):120-129. (in Chinese)
[13] 邓明科, 张阳玺, 胡红波. 高延性混凝土加固钢筋混凝土柱抗震性能试验研究[J]. 建筑结构学报, 2017, 38(6):86-94. Deng Mingke, Zhang Yangxi, Hu Hongbo. Experimental study on seismic behavior of reinforced concrete column strengthened with high ductile concrete[J]. Journal of Building Structures, 2017, 38(6):86-94. (in Chinese)
[14] Pan Jinlong, Gu Jie, Chen Junhan. Theoretical modeling of steel reinforced ECC column under eccentric compressive loading[J]. Science China (Technological Sciences), 2015, 58(5):889-898.
[15] Fang Y, Mengcheng C, Fengliu Z, et al. Behaviors of steel-reinforced ECC columns under eccentric compression[J]. Construction and Building Materials, 2018, 185:402-413.
[16] GB50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2010. GB50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture Industry Press, 2010. (in Chinese)
[17] 邓明科, 景武斌, 秦萌, 等. 高延性纤维混凝土抗压强度试验研究[J]. 建筑结构, 2016, 46(23):79-84. Deng Mingke, Jing Wubin, Qin Meng, et al. Experimental research on compressive strength of high ductility fiber reinforced concrete[J]. Building Structure, 2016, 46(23):79-84. (in Chinese)
[18] 过镇海. 钢筋混凝土原理[M]. 北京:清华大学出版社, 2013. Guo Zhenhai. Reinforced concrete theory[M]. Beijing:Tsinghua University Press, 2013. (in Chinese)
[19] Deng M, Han J, Liu H, et al. Analysis of compressive toughness and deformability of high ductile fiber reinforced concrete[J]. Advances in Materials Science & Engineering, 2015, 2015(3):1-7.
[20] 党争, 梁兴文, 邓明科, 等. 局部采用纤维增强混凝土剪力墙压弯性能研究[J]. 工程力学, 2015, 32(2):120-130. Dang Zeng, Liang Xingwen, Deng Mingke, et al. The compression-bending behavior of shear wall with shear fiber reinforced concrete in bottom region[J]. Engineering Mechanics, 2015, 32(2):120-130. (in Chinese)
[1] 蒋友宝, 尹倩倩, 罗军, 付涛. 基于承载力拟合的钢拱不利几何缺陷分析[J]. 工程力学, 2019, 36(S1): 203-209.
[2] 庞瑞, 张艺博, 张天鹏, 李倩倩, 梁书亭. 分布式连接全装配RC楼盖横板向弯曲刚度计算方法研究[J]. 工程力学, 2019, 36(S1): 37-43,58.
[3] 王元清, 乔学良, 贾连光, 张天雄, 蒋庆林. 单调加载下不锈钢结构梁柱栓焊混用节点承载性能分析[J]. 工程力学, 2019, 36(S1): 59-65.
[4] 张天龙, 丁阳, 李忠献. 基于损伤的单层球面网壳结构地震剩余承载力评估与优化分析[J]. 工程力学, 2019, 36(S1): 131-137.
[5] 程麦理. 黄土场地桩基横向力学行为数值模拟[J]. 工程力学, 2019, 36(S1): 229-233.
[6] 梁兴文, 汪萍, 徐明雪, 于婧, 李林. 免拆UHPC模板RC梁受弯性能试验及承载力分析[J]. 工程力学, 2019, 36(9): 95-107.
[7] 田稳苓, 温晓东, 彭佳斌, 徐丽丽, 李子祥. 新型泡沫混凝土轻钢龙骨复合墙体抗剪承载力计算方法研究[J]. 工程力学, 2019, 36(9): 143-153.
[8] 邓明科, 马福栋, 叶旺, 殷鹏飞. 局部采用高延性混凝土装配式框架梁-柱节点抗震性能试验研究[J]. 工程力学, 2019, 36(9): 68-78.
[9] 王威, 赵春雷, 苏三庆, 任坦, 刘格炜, 董晨阳. 带栓钉波形钢板混凝土组合构件粘结滑移性能与承载力试验研究[J]. 工程力学, 2019, 36(9): 108-119.
[10] 徐明雪, 梁兴文, 汪萍, 王照耀. 超高性能混凝土梁正截面受弯承载力理论研究[J]. 工程力学, 2019, 36(8): 70-78.
[11] 武海鹏, 曹万林, 董宏英. 基于“统一理论”的异形截面多腔钢管混凝土柱轴压承载力计算[J]. 工程力学, 2019, 36(8): 114-121.
[12] 杨勇, 孙东德, 张超瑞, 薛亦聪, 陈阳, 于云龙. 钢管高强混凝土叠合构件受剪承载能力试验研究[J]. 工程力学, 2019, 36(8): 182-191.
[13] 侯立群, 闫维明, 陈适才, 陆新征. 内置角钢改进夹心节点抗震性能研究与抗剪承载力计算[J]. 工程力学, 2019, 36(7): 79-88.
[14] 邓明科, 董志芳, 杨铄, 王露, 周铁钢. 高延性混凝土加固震损砌体结构振动台试验研究[J]. 工程力学, 2019, 36(7): 116-125.
[15] 梁兴文, 王莹, 于婧, 李林. 预制UHPC模板及采用预制模板的RC板受力性能及承载力分析[J]. 工程力学, 2019, 36(7): 146-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张冬娟;崔振山;李玉强;阮雪榆. 平面应变板料拉弯成形回弹理论分析[J]. 工程力学, 2007, 24(7): 0 -071 .
[2] 何浩祥;闫维明;陈彦江. 地震动加加速度反应谱的概念及特性研究[J]. 工程力学, 2011, 28(11): 124 -129 .
[3] 戈新生;陈立群;刘延柱. 一类多体系统的非完整运动规划最优控制[J]. 工程力学, 2006, 23(3): 63 -68 .
[4] 杨勇;郭子雄;聂建国;赵鸿铁. 型钢混凝土结构ANSYS数值模拟技术研究[J]. 工程力学, 2006, 23(4): 79 -85,5 .
[5] 高彦斌;. 饱和软粘土一维非线性流变——固结耦合分析[J]. 工程力学, 2006, 23(8): 116 -121, .
[6] 许福友;马如进;陈艾荣;王达磊. 苏通大桥全桥气弹模型设计与模态调试[J]. 工程力学, 2009, 26(12): 150 -154, .
[7] 段红霞;李守巨;刘迎曦. 地震作用下钢结构损伤过程数值模拟[J]. 工程力学, 2011, 28(2): 198 -204 .
[8] 李士军;乐贵高;林国问;马大为. 导弹适配器与发射筒过盈配合研究[J]. 工程力学, 2011, 28(4): 245 -250 .
[9] 郑和晖;刘 钊;贺志启. 混凝土箱梁桥的横隔梁拉压杆模型及配筋设计[J]. 工程力学, 2011, 28(5): 97 -104 .
[10] 魏英杰;闵景新;王 聪;邹振祝;余 峰. 潜射导弹垂直发射过程空化特性研究[J]. 工程力学, 2009, 26(7): 251 -256 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日