工程力学 ›› 2019, Vol. 36 ›› Issue (5): 44-52.doi: 10.6052/j.issn.1000-4750.2018.04.0189

• 土木工程学科 • 上一篇    下一篇

混凝土梁柱子结构连续倒塌动力效应的试验研究

肖宇哲1, 李易1, 陆新征2, 任沛琪3, 何浩祥1   

  1. 1. 北京工业大学工程抗震与结构诊治北京市重点实验室, 北京 100124;
    2. 清华大学土木工程安全与耐久教育部重点实验室, 北京 100084;
    3. 中国建筑标准设计研究院, 北京 100048
  • 收稿日期:2018-04-02 修回日期:2018-06-25 出版日期:2019-05-25 发布日期:2019-04-01
  • 通讯作者: 李易(1981-),男,湖北襄阳人,副研究员,博士,研究生院副院长,主要从事工程结构防灾减灾研究(E-mail:yili@bjut.edu.cn). E-mail:yili@bjut.edu.cn
  • 作者简介:肖宇哲(1993-),男,安徽铜陵人,硕士生,主要从事混凝土结构倒塌试验研究(E-mail:876413530@qq.com);陆新征(1978-),男,安徽芜湖人,教授,博士,所长,主要从事结构非线性计算和仿真研究(E-mail:luxz@tsinghua.edu.cn);任沛琪(1991-),女,山东临沂人,工程师,硕士,主要从事结构抗连续倒塌试验和设计方法研究(E-mail:huixin0928@163.com);何浩祥(1978-),男,辽宁沈阳人,教授,博士,副所长,主要从事结构健康监测研究(E-mail:hhx7856@bjut.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51578018);国家重点研发计划项目(2016YFC0701400);北京科技新星计划项目(xx2017093)

EXPERIMENTAL STUDY ON THE DYNAMIC EFFECTS IN PROGRESSIVE COLLAPSE OF BEAM-COLUMN CONCRETE SUBSTRUCTURES

XIAO Yu-zhe1, LI Yi1, LU Xin-zheng2, REN Pei-qi3, HE Hao-xiang1   

  1. 1. Beijing Key Laboratory of Earthquake Engineering and Structural Retrofit, Beijing University of Technology, Beijing 100124, China;
    2. Key Laboratory of Civil Engineering Safety and Durability of Ministry of Education, Tsinghua University, Beijing 100084, China;
    3. China Institute of Building Standard Design & Research, Beijing 100048, China
  • Received:2018-04-02 Revised:2018-06-25 Online:2019-05-25 Published:2019-04-01

摘要: 连续倒塌是结构系统的非线性动力行为,准确评估动力效应是建立简化工程设计方法的核心工作。为了研究钢筋混凝土梁柱子结构动力连续倒塌机理和动力效应,对4个尺寸和材料完全相同的试件分别开展了1次静力和4次动力试验。试验结果表明:动力连续倒塌的应力集中和非对称受力现象更加明显,且受材料应变率效应的影响,梁端受拉裂缝集中开展,受压区混凝土压碎剥落区域较小;考虑到动力损伤和材料应变率对结构自身抗力特征的影响,广义动力抗力能够更加准确地描述实际动力连续倒塌过程中的抗力需求;动力损伤和材料应变率效应使得结构的动力放大效应增强,实际动力放大系数均大于传统理论预测值。

关键词: 钢筋混凝土结构, 梁柱子结构, 连续倒塌, 动力效应, 倒塌抗力

Abstract: Progressive collapse is a nonlinear dynamic behavior of structure systems. The key issue in establishing the simplified method for the practical engineering design is to evaluate the dynamic effect accurately. To investigate the dynamic progressive collapse mechanism and the dynamic effect of reinforced concrete substructures, one static and four dynamic experiments were conducted on four specimens, which had the identical dimensions and material properties. The results indicated that the stress concentration and asymmetric deformation in the dynamic tests were severer than those in the static test due to the high strain rate effect. Thus, the cracks developed intensively at the beam ends and the concrete spalling area caused by compression was relatively small in dynamic tests. The general dynamic resistance, in which the effects of dynamic damage and high strain rate to the structural resistance were inherently considered, was able to accurately predict the resistance demand in the real progressive collapse process. In addition, the dynamic amplification effect was enhanced by the effect of dynamic damage and high strain rate, thus the practical dynamic amplification factors were larger than the predicted values of the conventional theory.

Key words: reinforced concrete structure, beam-column substructure, progressive collapse, dynamic effect, collapse resistance

中图分类号: 

  • TU375.1
[1] ASCE/SEI 7-10, Minimum design loads for buildings and other structures[S]. Reston, Virginia:American Society of Civil Engineers, 2010.
[2] 郭义庆, 喻军. 单柱失效下结构连续倒塌的动力响应分析[J]. 工程力学, 2017, 34(4):72-77. Guo Yiqing, Yu Jun. Dynamic structural response of progressive collapse under a single-column-removal scenario[J]. Engineering Mechanics, 2017, 34(4):72-77. (in Chinese)
[3] 喻莹, 谭长波, 金林, 等. 基于有限质点法的单层球面网壳强震作用下连续倒塌破坏研究[J]. 工程力学, 2016, 33(5):134-141. Yu Ying, Tan Changbo, Jin Lin, et al. Research on seismic progressive collapse of single-layer reticulated dome using the finite particle method[J]. Engineering Mechanics, 2016, 33(5):134-141. (in Chinese)
[4] 孟宝, 钟炜辉, 郝际平. 不同跨度比下栓焊刚性连接梁柱子结构抗倒塌性能试验研究[J]. 工程力学, 2018, 35(1):79-87. Meng bao, Zhong Weihui, Hao Jiping. Experimental study on anti-collapse performance for beam-column assemblies with bolt and weld rigid connection based on different span ratio[J]. Engineering Mechanics, 2018, 35(1):79-87. (in Chinese)
[5] 潘毅, 陈侠辉, 姚蕴艺, 等. 基于抽柱法的无粘结预应力装配式框架结构连续倒塌分析[J]. 工程力学, 2017, 34(12):162-170. Pan Yi, Chen Xiahui, Yao Yunyi, et al. Progressive collapse analysis of unbonded post-tensioned precast RC frame structures using column removal method[J]. Engineering Mechanics, 2017, 34(12):162-170. (in Chinese)
[6] Peng Z, Orton L S, Liu J, et al. Experimental study of dynamic progressive collapse in flat-plate buildings subjected to an interior column removal[J]. Journal of Structural Engineering, ASCE, 2018, 144(8):04018094.
[7] Gao S, Xu M, Zhang S. Dynamic analysis of concrete-filled steel tube composite frame against progressive collapse based on benchmark model[J]. Advances in Structural Engineering, 2018, 21(7):1021-1035.
[8] Ma K, Xu Y, Li W. Dynamic response analysis of steel frame with a sudden removal first floor column[J]. Journal of Intelligent and Fuzzy Systems, 2018, 34(2):1133-1140.
[9] 高佳明, 刘伯权, 黄华, 等. 带板钢筋混凝土框架连续倒塌理论分析[J]. 工程力学, 2018, 35(7):117-126. Gao Jiaming, Liu Boquan, Huang Hua, et al. Theoretical analysis on the progressive collapse of RC frame structures with slabs[J]. Engineering Mechanics, 2018, 35(7):117-126. (in Chinese)
[10] 周云, 陈太平, 胡翔, 等. 考虑周边结构约束影响的RC框架结构防连续倒塌性能研究[J]. 工程力学, 2018, 36(1):216-226. Zhou Yun, Chen Taiping, Hu Xiang, et al. Progressive collapse resistance of RC frame structures considering surrounding structural constraints[J]. Engineering Mechanics, 2018, 36(1):216-226. (in Chinese)
[11] DOD2013, Design of buildings to resist progressive collapse[S]. Washington D. C.:Department of Defense, 2013.
[12] GSA2013, Alternate path analysis and design guidelines for progressive collapse resistance[S]. Washington D. C.:the U. S. General Services Administration, 2013.
[13] Marchand K, McKay A, Stevens D. Development and application of linear and non-linear static approaches in UFC 4-023-03[C]//Lawrence G, Todd H, Mark W, Marc H. Proceedings of the 2009 Structures Congress. Texus:American Society of Civil Engineers, 2009:1729-1738.
[14] 李易, 叶列平, 陆新征. 基于能量方法的RC框架结构连续倒塌抗力需求分析I:梁机制[J]. 建筑结构学报, 2011, 32(11):1-8. Li Yi, Ye Lieping, Lu Xinzheng. Progressive collapse resistance demand of RC frame structures based on energy method I:Beam mechanism[J]. Journal of Building Structures, 2011, 32(11):1-8. (in Chinese)
[15] 李易, 陆新征, 叶列平. 框架结构连续倒塌抗力需求分析Ⅱ:悬链线机制[J]. 建筑结构学报, 2011, 32(11):9-16. Li Yi, Lu Xinzheng, Ye Lieping. Progressive collapse resistance demand of RC frame structures based on energy method Ⅱ:Catenary mechanism[J]. Journal of Building Structures, 2011, 32(11):9-16. (in Chinese)
[16] Tian Y, Su Y. Dynamic response of reinforced concrete beams following instantaneous removal of a bearing column[J]. International Journal of Concrete Structures and Materials, 2011, 5(1):19-28.
[17] Qian K, Li B. Performance of three-dimensional reinforced concrete beam-column substructures under loss of a corner column scenario[J]. Journal of Structural Engineering, ASCE, 2013, 139(4):584-594.
[18] Qian K, Li B. Dynamic performance of RC beam-column substructures under the scenario of the loss of a corner column-Experimental results[J]. Engineering Structures, 2012, 42:154-167.
[19] Pham A T, Tan K H. Experimental study on dynamic responses of reinforced concrete frames under sudden column removal applying concentrated loading[J]. Engineering Structures, 2017, 139:31-45.
[20] 初明进, 周育泷, 陆新征, 等. 钢筋混凝土单向梁板子结构抗连续倒塌试验研究[J]. 土木工程学报, 2016, 49(2):31-40. Chu Mingjin, Zhou Yulong, Lu Xinzheng, et al. An experimental study on one-way reinforced concrete beam-slab substructures for resisting progressive collapse[J]. China Civil Engineering Journal, 2016, 49(2):31-40. (in Chinese)
[21] Bischoff P H, Perry S H. Compressive behavior of concrete at high-strain rates[J]. Materials and Structures, 1991, 24(144):425-450.
[22] Majzoobi G H, Mahmoudi A H, Moradi S. Ductile to brittle failure transition of HSLA-100 Steel at high strain rates and subzero temperatures[J]. Engineering Fracture Mechanics, 2016, 158:179-193.
[23] Peng Z, Orton L S, Liu J, et al. Experimental study of dynamic progressive collapse in flat-plate buildings subjected to exterior column removal[J]. Journal of Structural Engineering, ASCE, 2017, 143(9):04017125.
[1] 席仁强, 许成顺, 杜修力, 许坤. 工作状态对风力发电机地震响应的影响[J]. 工程力学, 2019, 36(4): 80-88.
[2] 杜轲, 滕楠, 孙景江, 燕登, 骆欢. 基于共旋坐标和力插值纤维单元的RC框架结构连续倒塌构造方法[J]. 工程力学, 2019, 36(3): 95-104.
[3] 高佳明, 刘伯权, 黄华, 周长泉. 带板钢筋混凝土框架连续倒塌理论分析[J]. 工程力学, 2018, 35(7): 117-126.
[4] 孟宝, 钟炜辉, 郝际平. 基于节点刚度的钢框架梁柱子结构抗倒塌性能试验研究[J]. 工程力学, 2018, 35(6): 88-96.
[5] 王景玄, 王文达, 李华伟. 钢管混凝土平面框架子结构抗连续倒塌精细有限元分析[J]. 工程力学, 2018, 35(6): 105-114.
[6] 田黎敏, 魏建鹏, 郝际平. 大跨度单层空间网格结构连续性倒塌动力效应分析及简化模拟方法研究[J]. 工程力学, 2018, 35(3): 115-124.
[7] 孟宝, 钟炜辉, 郝际平. 不同跨度比下栓焊刚性连接梁柱子结构抗倒塌性能试验研究[J]. 工程力学, 2018, 35(1): 79-87.
[8] 安宇骢, 谢楠, 贾影. 防连续倒塌高大模板支撑体系的两阶段设计研究[J]. 工程力学, 2017, 34(增刊): 289-294.
[9] 钟炜辉, 孟宝, 郝际平. 不对称跨度下钢框架梁柱子结构抗倒塌性能分析[J]. 工程力学, 2017, 34(5): 125-131.
[10] 潘毅, 陈侠辉, 姚蕴艺, 邓开来. 基于抽柱法的无粘结预应力装配式框架结构连续倒塌分析[J]. 工程力学, 2017, 34(12): 162-170.
[11] 杨慧, 何浩祥, 张向东, 闫维明. 面向RC结构损伤演变的位移相关型阻尼模型及参数识别[J]. 工程力学, 2017, 34(11): 126-134.
[12] 刁梦竹, 李易, 陆新征, 闫维明. 钢筋混凝土楼板连续倒塌的一种简化模拟方法[J]. 工程力学, 2016, 33(增刊): 72-78.
[13] 陆金钰, 董霄, 李娜, 武啸龙. 环箍-穹顶索杆结构局部断索抗倒塌能力分析[J]. 工程力学, 2016, 33(增刊): 173-178.
[14] 喻莹, 谭长波, 金林, 王钦华, 朱兴一. 基于有限质点法的单层球面网壳强震作用下连续倒塌破坏研究[J]. 工程力学, 2016, 33(5): 134-141.
[15] 周育泷, 李易, 陆新征, 初明进, 任沛琪. 钢筋混凝土框架抗连续倒塌的压拱机制分析模型[J]. 工程力学, 2016, 33(4): 34-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 童育强;向天宇;赵人达. 基于退化理论的空间梁单元有限元分析[J]. 工程力学, 2006, 23(1): 33 -37 .
[2] 杨勇;郭子雄;聂建国;赵鸿铁. 型钢混凝土结构ANSYS数值模拟技术研究[J]. 工程力学, 2006, 23(4): 79 -85,5 .
[3] 李建宇;李兴斯. 基于互补模型的弹塑性桁架结构灵敏度分析过程[J]. 工程力学, 2006, 23(2): 149 -152, .
[4] 王海东;尚守平. 瑞利波作用下考虑桩土相互作用的单桩竖向动力响应计算研究[J]. 工程力学, 2006, 23(8): 74 -78 .
[5] 金 阳;童根树. 楔形工字梁腹板的弹性剪切屈曲分析[J]. 工程力学, 2009, 26(9): 1 -009 .
[6] 何 政;金建平;宋继广. 带载状态下CFRP约束混凝土圆柱膨胀比试验研究[J]. 工程力学, 2009, 26(9): 145 -151, .
[7] 张 辉;范宝春;陈志华;董 刚. 基于伴随流场的流动优化控制[J]. 工程力学, 2009, 26(9): 231 -236 .
[8] 郝亚娟;白象忠. ULE法求解横向绕流条件下固支弹性薄板[J]. 工程力学, 2009, 26(11): 17 -022 .
[9] 金学松;郭 俊;肖新标;温泽峰;周仲荣. 高速列车安全运行研究的关键科学问题[J]. 工程力学, 2009, 26(增刊Ⅱ): 8 -022, .
[10] 强洪夫;韩亚伟;王坤鹏;高巍然. 基于罚函数SPH新方法的水模拟充型过程的数值分析[J]. 工程力学, 2011, 28(1): 245 -250 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日