工程力学 ›› 2019, Vol. 36 ›› Issue (5): 137-147.doi: 10.6052/j.issn.1000-4750.2018.03.0184

• 土木工程学科 • 上一篇    下一篇

循环荷载下奥氏体型和双相型不锈钢材料本构关系研究

常笑1, 杨璐1, 王萌2, 尹飞1   

  1. 1. 北京工业大学建筑与土木工程学院, 北京 100124;
    2. 北京交通大学土木建筑工程学院, 北京 100044
  • 收稿日期:2018-03-30 修回日期:2018-12-25 出版日期:2019-05-25 发布日期:2019-02-27
  • 通讯作者: 杨璐(1982-),男,湖北宜昌人,教授,工学博士,从事钢结构及施工技术研究(E-mail:lyang@bjut.edu.cn). E-mail:lyang@bjut.edu.cn
  • 作者简介:常笑(1993-),女,北京人,硕士生,从事钢结构方面研究(E-mail:changxiao6601@163.com);王萌(1985-),女,黑龙江哈尔滨人,副教授,工学博士,从事高层钢结构抗震研究(E-mail:wangmeng1117@gmail.com);尹飞(1992-),男,河北邯郸人,硕士生,从事钢结构方面研究(E-mail:yinfei622@email.bjut.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51478019);北京市科技新星计划项目(2016117)

STUDY ON CONSTITUTIVE MODEL OF AUSTENITIC STAINLESS STEEL AND DUPLEX STAINLESS STEEL UNDER CYCLIC LOADING

CHANG Xiao1, YANG Lu1, WANG Meng2, YIN Fei1   

  1. 1. The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China;
    2. School of civil engineering, Beijing Jiaotong University, Beijing 100044, China
  • Received:2018-03-30 Revised:2018-12-25 Online:2019-05-25 Published:2019-02-27

摘要: 为研究循环荷载下不锈钢材料的本构关系,对奥氏体型S30408不锈钢和双相型S220503不锈钢材料进行了单调拉伸和大应变超低周循环加载试验。采用三种常用的单调拉伸本构模型对所得应力-应变曲线进行拟合,得到相应单调荷载下材料本构参数;采用Ramberg-Osgood本构模型对循环骨架曲线进行拟合,得到材料循环强化参数;利用Chaboche塑性本构模型,标定了两种材料的循环本构参数。结果表明:在单调拉伸荷载下,G-R-O本构模型更适用于拟合不锈钢材料的单调拉伸本构;在循环荷载下,不锈钢材料滞回曲线饱满,且随着应变增大,两种材料在加载后期均表现出了明显的循环强化现象;Ramberg-Osgood本构模型对骨架曲线拟合较好,有限元计算结果和试验滞回曲线吻合度高;表明该文标定出的强化参数、循环本构参数可用于结构体系地震响应分析之中,为准确分析不锈钢结构在地震作用下的受力性能提供参考。

关键词: 奥氏体型不锈钢, 双相型不锈钢, 循环加载, 骨架曲线, 滞回本构, 有限元分析

Abstract: In order to study the constitutive relation of stainless steel under cyclic loading, austenitic stainless steel S30408 and duplex stainless steel S220503 coupons were tested under monotonic and large-strain ultra-low cyclic loading. Three types of constitutive models were used to fit the stress-strain relationship under monotonic loading, and pertinent constitutive relation parameters were obtained. The cyclic skeleton curves were fitted by the Ramberg-Osgood model, and the parameters of the cyclic hardening were calculated. Furthermore, the parameters of the cyclic constitutive model were calibrated and the test curves were simulated by ABAQUS finite element analysis software. The results show that the G-R-O constitutive model can fit the constitutive relation better under monotonic loading. Under cyclic loading, with the increase of cyclic loops and change in strain amplitudes, stainless steel exhibits a cyclic hardening behavior. The Ramberg-Osgood model fit the skeleton curve well and the simulated curves agree fairly well with the test curves. Therefore, the hardening parameters and cyclic constitutive parameters which calibrated by the test data can be applied to the structural seismic analysis, and improve the accuracy of analysis for the stainless steel structure under earthquake.

Key words: austenitic stainless steel, duplex stainless steel, cyclic loading, skeleton curve, hysteretic constitutive model, finite element method (FEM)

中图分类号: 

  • TU391
[1] Baddoo N R. Stainless steel in construction:A review of research, applications, challenges and opportunities[J]. Journal of Constructional Steel Research, 2008, 64(11):1199-1206.
[2] 方志, Ivan Campbell T. 不锈钢和CFRP混合配筋预应力混凝土梁的延性和变形性能[J]. 工程力学, 2005, 22(3):190-197. Fang Zhi, Ivan Campbell T. Ductility of concrete beams prestressed with CFRP[J]. Engineering Mechanics, 2005, 22(3):190-197. (in Chinese)
[3] 杨璐, 徐东辰, 尚帆, 等. 双相型不锈钢焊接工字形截面轴压柱整体稳定性能试验研究[J]. 建筑结构学报, 2015, 36(7):99-105. Yang Lu, Xu Dongchen, Shang Fan, et al. Experimental study on the overall stability of duplex stainless steel welded I-section columns under axial compression.[J]. Journal of Building Structures, 2015, 36(7):99-105. (in Chinese)
[4] 杨璐, 徐东辰, 尚帆, 等. 双相型不锈钢焊接箱形截面轴压构件整体稳定性能试验研究[J]. 东南大学学报(自然科学版), 2015, 45(2):364-369. Yang Lu, Xu Dongchen, Shang Fan, et al. Experimental study on the overall stability of biaxial stainless steel welded box section axial compression members[J]. Journal of Southeast University (Natural Science Edition), 2015, 45(2):364-369. (in Chinese)
[5] 张涌泉. 双相型不锈钢轴心受压构件承载力试验研究与理论分析[D]. 南京:东南大学, 2016. Zhang Yongquan. Experimental research and theoretical analysis of the bearing capacity of dual phase stainless steel axially compression members[D]. Southeast University, 2016. (in Chinese)
[6] 杨璐, 张有振, 周晖, 等. 双相型S22053不锈钢角焊缝连接拉伸试验研究[J]. 土木工程学报, 2016(11):19-25. Yang Lu, Zhang Youzhen, Zhou Hui, et al. Tensile test study on fillet weld connections of S22053-grade duplex stainless steel[J]. China Civil Engineering Journal, 2016(11):19-25. (in Chinese)
[7] 尚帆, 杨璐, 赵梦晗, 等. 不锈钢工字形截面轴心受压构件整体稳定性能有限元研究[J]. 工程力学, 2016, 33(3):112-119. Shang Fan, Yang Lu, Zhao Menghan, et al. FEA study on the overall stability performance of a stainless steel I-section axial compression member[J]. Engineering Mechanics, 2016, 33(3):112-119. (in Chinese)
[8] 尚帆, 杨璐, 赵梦晗, 等. 不锈钢箱形截面轴心受压构件整体稳定性有限元研究[J]. 建筑结构, 2016(6):66-70. Shang Fan, Yang Lu, Zhao Menghan, et al. The FEA study of the overall stability of the stainless steel box section axial compression members finite element study[J]. Building Structure, 2016(6):66-70. (in Chinese)
[9] 袁焕鑫, 王元清, 杜新喜, 等. 不锈钢焊接工字形截面短柱轴压局部稳定性能试验研究[J]. 建筑结构学报, 2015, 36(5):38-45. Yuan Huanxin, Wang Yuanqing, Du Xinxi, et al. Experimental research on local stability of stainless steel welded I-section short columns under axial compression[J]. Journal of Building Structures, 2015, 36(5):38-45. (in Chinese)
[10] Yang L, Zhao M, Chan T M, et al. Flexural buckling of welded austenitic and duplex stainless steel I-section columns[J]. Journal of Constructional Steel Research, 2016, 122:339-353.
[11] 王元清, 赵义鹏, 徐春一, 等. 不同种类螺栓的不锈钢端板连接节点抗震性能试验研究[J]. 天津大学学报(自然科学与工程技术版), 2017(增1):140-146. Wang Yuanqing, Zhao Yipeng, Xu Chunyi, et al. Experimental research on seismic performance of stainless steel end plate connections with different bolts.[J]. Journal of Tianjin University (Natural Science and Engineering Edition), 2017(Suppl1):140-146. (in Chinese)
[12] 石永久, 王萌, 王元清. 循环荷载作用下结构钢材本构关系试验研究[J]. 建筑材料学报, 2012, 15(3):293-300. Shi Yongjiu, Wang Meng, Wang Yuanqing. Experimental study on constitutive relationship of structural steel under cyclic loading study of[J]. Journal of construction Materials, 2012, 15(3):293-300. (in Chinese)
[13] Nip K H, Gardner L, Davies C M, et al. Extremely low cycle fatigue tests on structural carbon steel and stainless steel[J]. Journal of Constructional Steel Research, 2010, 66(1):96-110.
[14] Roy S C, Goyal S, Sandhya R, et al. Low cycle fatigue life prediction of 316 L(N) stainless steel based on cyclic elasto-plastic response[J]. Nuclear Engineering and Design, 2012, 253(2012):219-225.
[15] Ye D, Matsuoka S, Nagashima N, et al. The low-cycle fatigue, deformation and final fracture behaviour of an austenitic stainless steel[J]. Materials Science & Engineering A (Structural Materials:Properties, Microstructure and Processing), 2006, 415(1/2):104-117.
[16] 王留兵. Z2CND18. 12N奥氏体不锈钢低周疲劳及热机疲劳性能研究[D]. 天津:天津大学化工学院. 2010-06. Wang Liubing. Z2CND18. 12N austenitic stainless steel in low cycle fatigue and thermo mechanical fatigue of the performance of[D]. Tianjin:Chemical Engineering Tianjin University 2010-6. (in Chinese)
[17] 于敦吉. 奥氏体不锈钢循环塑性的微观机理和宏观本构描述[D]. 天津:天津大学, 2014-11. Yu Dunji. A study of micro-mechanisms and macroconstitutive modeling of the cyclic plasticity of austenitic stainless steels[D]. Tianjin:Tianjin University, 2014-11. (in Chinese)
[18] 罗云蓉, 于清远. 建筑用抗震钢高应变低周及超低周疲劳性能研究进展[J]. 四川建筑科学研究, 1008-1933(2011)03-139-07. Luo Yunrong, Yu Qingyuan. Advances in research on high strain low cycle fatigue properties of low cycle Jichao[J]. Building Science Research of Sichuan, 1008-1933(2011)03-139-7. (in Chinese)
[19] Ramberg W, Osgood W R. Determination of stress-strain curves by three parameters[R]. Technical note No. 503, National Advisory Committee on Aeronautics (NACA), 1941.
[20] Mirambell E, Real E. On the calculation of deflections in structural stainless steel beams:an experimental and numerical investigation[J]. Journal of Constructional Steel Research, 2000, 54(1):109-133.
[21] Gardner L, Nethercot D A. Experiments on stainless steel hollow sections-Part 1:Material and cross-sectional behavior[J]. Journal of Constructional Steel Research, 2004, 60(9):1291-1318.
[22] Quach W M, Teng J G, Chung K F. Three-stage full-range stress-strain model for stainless steels[J]. Journal of Structural Engineering ASCE, 2008, 134(9):1518-1527.
[23] Nathaniel G C, Krawinkler H. Uniaxial cyclic stress-strain behavior of structural steel[J]. Journal of Engineering Mechanics, 1985, 111(9):1105-1120.
[24] Chaboche J L. Time independent constitutive theories for cyclic plasticity[J]. International Journal of Plasticity,1986, 2(2):149-188.
[25] 王萌, 杨维国. 奥氏体不锈钢滞回本构模型研究[J]. 建筑材料学报, 2015(11):107-114. Wang Meng, Yang Weiguo. Austenitic stainless steel hysteretic constitutive model[J]. Journal of Architectural Materials, 2015(11):107-114. (in Chinese)
[26] 王元清, 常婷. 循环荷载下奥氏体不锈钢的本构关系试验研究[J]. 东南大学学报(自然科学版), 2012, 42(6):1175-1179. Wang Yuanqing, Chang Ting. Experimental study on constitutive relation of austenitic stainless steel under cyclic loading[J]. Journal of Southeast University (Natural Science Edition), 2012, 42(6):1175-1179. (in Chinese)
[27] Nip K H, Gardner L, Davies C M. et al. Extremely low cycle fatigue tests on structural carbon steel and stainless steel[J]. Journal of Constructional Steel Research, 2010, 66(1):96-110.
[28] 段文峰, 邓泽鹏, 刘文渊, 等. 不锈钢S30408材料本构模型试验研究[J]. 钢结构, 2016, 31(5):37-40. Duan Wenfeng, Deng Zeping, Liu Wenyuan et al. The constitutive model test of stainless steel S30408 materials study[J]. Steel Structure, 2016, 31(5):37-40. (in Chinese)
[29] Chaboche J L. Time-independent constitutive theories for cyclic plasticity[J]. International Journal of Plasticity, 1986, 2(2):149-188
[30] GB/T 228. 1-2010, 金属材料拉伸试验第一部分:室温试验方法[S]. 北京:中国标准出版社, 2010. GB/T 228. 1-2010, metal material tensile test Part 1:room temperature test method[S]. Beijing:China Standard Press, 2010. (in Chinese)
[31] EN 10088-1:2005, Stainless steels-Part 1:List of stainless steels[S]. CEN, 2005.
[32] ASTM A959-11, Standard guide for specifying harmonized standard grade compositions for wrought stainless steels[S]. West Conshohocken, PA:ASTM International, 2011.
[33] GB/T 20878-2007, 不锈钢和耐热钢牌号及化学成分[S]. 北京:中国标准出版社, 2007. GB/T 20878-2007, Stainless and heat-resisting steelsDesignation and chemical composition[S]. Beijing:Standards Press of China, 2007. (in Chinese)
[34] SEI/ASCE 8-02, Specification for the design of cold-formed stainless steel structural members[S]. New York:American Society of Civil Engineers (ASCE), 2002.
[35] Gardner L, Nethercot D A. Experiments on stainless steel hollow sections-Part 1:Material and cross-sectional behavior[J]. Journal of Constructional Steel Research, 2004, 60(9):1291-1318.
[36] Quach W M, Teng J G, Chung K F. Three-stage full-range stress-strain model for stainless steels[J]. Journal of Structural Engineering ASCE, 2008, 134(9):1518-1527.
[1] 朱张峰, 郭正兴. 考虑竖向与水平接缝的工字形装配式混凝土剪力墙抗震性能试验研究[J]. 工程力学, 2019, 36(3): 139-148.
[2] 周云, 陈太平, 胡翔, 易伟建. 考虑周边结构约束影响的RC框架结构防连续倒塌性能研究[J]. 工程力学, 2019, 36(1): 216-226,237.
[3] 朱柏洁, 张令心, 王涛. 轴力作用下剪切钢板阻尼器力学性能试验研究[J]. 工程力学, 2018, 35(S1): 140-144.
[4] 何群, 陈以一, 田海. LYP100钢材大应变下滞回性能[J]. 工程力学, 2018, 35(S1): 27-33.
[5] 王兵, 尤洪旭, 刘晓. 高温后型钢再生混凝土梁受弯研究[J]. 工程力学, 2018, 35(S1): 161-165,180.
[6] 温科伟, 刘树亚, 杨红坡. 基于小应变硬化土模型的基坑开挖对下穿地铁隧道影响的三维数值模拟分析[J]. 工程力学, 2018, 35(S1): 80-87.
[7] 杨志坚, 雷岳强, 谭雅文, 李帼昌, 王景明. 改进的PHC管桩与承台连接处桩端受力性能研究[J]. 工程力学, 2018, 35(S1): 223-229.
[8] 施刚, 王珣, 高阳, 张勇. 国产低屈服点钢材循环加载试验研究[J]. 工程力学, 2018, 35(8): 30-38.
[9] 郑山锁, 张晓辉, 黄威曾, 赵旭冉. 近海大气环境下锈蚀平面钢框架抗震性能试验研究及有限元分析[J]. 工程力学, 2018, 35(7): 62-73,82.
[10] 汪大洋, 韩启浩, 张永山. 多块混凝土板拼装组合钢板剪力墙试验与有限元参数影响研究[J]. 工程力学, 2018, 35(7): 83-93,138.
[11] 范重, 刘云博, 王祥臻, 吴徽, 王义华. 连梁骨架曲线与滞回特性研究[J]. 工程力学, 2018, 35(6): 68-77,87.
[12] 赵林, 展艳艳, 陈旭, 葛耀君. 基于配筋率包络指标的冷却塔群塔风致干扰准则[J]. 工程力学, 2018, 35(5): 65-74.
[13] 王妮, 陈宗平, 陈宇良. 型钢混凝土L形柱空间角节点抗震性能分析[J]. 工程力学, 2018, 35(5): 180-192.
[14] 洪俊青, 刘伟庆, 方海, 张富宾. 复合材料夹层板单向受弯应力分析[J]. 工程力学, 2018, 35(4): 41-51.
[15] 史艳莉, 周绪红, 鲜威, 王文达. 无端板矩形钢管混凝土构件基本剪切性能研究[J]. 工程力学, 2018, 35(12): 25-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日