工程力学 ›› 2019, Vol. 36 ›› Issue (5): 235-245.doi: 10.6052/j.issn.1000-4750.2018.03.0183

• 机械工程学科 • 上一篇    下一篇

海床土体减缓坠物对海底管道撞击作用的研究

姜逢源, 赵玉良, 谭俊哲, 董胜   

  1. 中国海洋大学工程学院, 山东, 青岛 266100
  • 收稿日期:2018-03-27 修回日期:2018-09-21 出版日期:2019-05-25 发布日期:2019-03-29
  • 通讯作者: 董胜(1968-),男,山东青岛人,教授,博士,博导,从事海洋工程环境及其与结构相互作用研究(E-mail:dongsh@ouc.edu.cn). E-mail:dongsh@ouc.edu.cn
  • 作者简介:姜逢源(1992-),男,辽宁丹东人,博士生,主要从事海洋环境与工程结构相互作用研究(E-mail:jiangfy_ouc@163.com);赵玉良(1993-),男,山东海阳人,博士生,主要从事海洋环境与工程结构相互作用研究(E-mail:ylzhao_ouc@163.com);谭俊哲(1972-),男,山东莱阳人,副教授,博士,主要从事海洋工程装备研究(E-mail:atan@ouc.edu.cn).
  • 基金资助:
    国家重点研发计划课题项目(2016YFC0802301);国家自然科学基金项目(51779236)

STUDY ON THE EFFECT OF SEABED SOIL ON RELIEVING DAMAGE OF SUBMARINE PIPELINES IMPACTED BY DROPPED OBJECTS

JIANG Feng-yuan, ZHAO Yu-liang, TAN Jun-zhe, DONG Sheng   

  1. College of Engineering, Ocean University of China, Qingdao, Shandong 266100, China
  • Received:2018-03-27 Revised:2018-09-21 Online:2019-05-25 Published:2019-03-29

摘要: 海底管道受坠物撞击的损伤分析中,海床土体是不宜忽略的因素。基于耦合欧拉-拉格朗日算法(CEL法),该文建立了模拟坠物撞击海底管道过程中土体变形的有限元模型,并进行了物理模型试验,二者结果吻合较好。针对粘土海床,分析了海床柔性、海床土质、管道埋深、摩擦及坠物形状对海底管道损伤的影响。研究表明:对于裸置管道,海床柔性使一部分撞击能量转化为管道的整体变形,减轻管道局部损伤;对于埋置管道,基于软件的二次开发,考虑了正常固结粘土及均质粘土两种情况,二者的安全埋深相差较大。综合考虑上述土质的影响,2 m的埋深可提供有效的保护;埋深超过1 m时,坠物与土体间的摩擦系数对管道损伤的影响更加明显;形状尖锐的坠物受到土体的阻力较小,对管道造成的损伤程度较大。不同形状的坠物撞击管道时,管道的变形特征存在差异。研究结果对管道的风险评估及安全埋深设计具有指导意义。

关键词: 海洋工程, 海底管道, 耦合欧拉-拉格朗日算法, 冲击荷载, 埋深, 正常固结土, 海床柔性

Abstract: Seabed plays an important role in the analysis of submarine pipeline subjectd to impact loads. Based on the coupled Eulerian-Lagrangian method (CEL method), a finite element numerical model is established to simulate the soil deformation involved in the impact process. Meanwhile, physical model tests are carried out. The numerical simulation results show good agreement with test results. Aiming at seabed in clay, a series of influence factors on pipeline damage have been analyzed, including the seabed flexibility, soil property, embedment depth, friction, and dropped object shape. For pipelines resting on seabed surface, part of the impact energy will be dissipated through pipeline global deformation due to bed flexibility, which can relieve the pipeline local damage. For buried pipelines, either the normally consolidated clay or the homogeneous clay is considered. The safe embedment depth of these two conditions differs significantly. Considering the aboved soil conditons, an embedment depth of approximately two meters can provide effective protection for pipelines. The friction coefficient between the dropped object and soil has influence on the dissipation of impact energy and pipeline damage, which is signficant when the embedment depth exceeds one meter. Dropped object in sharp shape can casue servere damage because of less resitance from soil. Besides, there are some differences between deformation characteristics of pipelines, which are influenced by dropped objects in various shapes. The research results are expected to provide reference for risk assessment and safe embedment depth design of submarine pipelines.

Key words: ocean engineering, submarine pipeline, coupled Eulerian-Lagrangian method, impact loads, embedment depth, normally consolidated clay, bed flexibility

中图分类号: 

  • TE973.92
[1] 方娜, 陈国明, 朱红卫, 等. 海底管道泄露事故统计分析[J]. 油气储运, 2014, 33(1):99-104. Fang Na, Chen Guoming, Zhu Hongwei, et al. Statistical analysis of leakage accidents of submarine pipeline[J]. Oil Gas Storage Transport, 2014, 33(1):99-104. (in Chinese)
[2] Longva V, Sævik S, Levold, et al. Dynamic simulation of subsea pipeline and trawl board pull-over interaction[J]. Marine Sturcutres, 2013, 34(4):156-184.
[3] Gao Q, Duan M, Liu X, et al. Damage assessment for submarine photoelectric composite cable under anchor impact[J]. Applied Ocean Research, 2018, 73:42-58.
[4] Ghosh S K, Jhonson W, Reid S R, et al. On thin rings and short tubes subjected to centrally opposed concentrated loads[J]. International Journal of Mechanical Sciences, 1981, 23(4):183-194.
[5] Jones N, Birch S E, Birch R B, et al. An experimental study on the lateral impact of fully clamped mild steel pipes[J]. Proceedings of the institution of Mechanical Engineers, Part E:Journal of Process Mechanical Engineering, 1992, 206(2):111-127.
[6] Ellinas C P, Walker A C. Damage on offshore tubular bracing members[C]//IABSE Colloquium on Ship Collisions With Bridges and Offshore Structures. Copenhagen, 1983:253-261.
[7] Bai Y, Pedesren P T. Elastic-plastic behaviour of offshore steel structures under impact loads[J]. International Journal of Impact Engineering, 1993, 13(1):99-115.
[8] Jones N, Shen W Q. A Theoretical study of the lateral impact of fully clamped pipelines[J]. Proceedings of the institution of Mechanical Engineers, Part E:Journal of Process Mechanical Engineering, 1992, 206(2):129-146.
[9] Wierzbicki T, Suh M S. Indentation of tubes under combine loading[J]. International Journal of Mechanical Sciences, 1988, 30(3/4):229-248.
[10] 粟京. DNV96版《海底管道系统规范》对冲击防护的新规定[J]. 石油工业技术监督, 1999, 15(2):15-17. SU Jing. New states of the shock protection in DNV96 version of marine pipe system standard[J]. Technology Supervision in Petroleum Industry, 1999, 15(2):15-17. (in Chinese)
[11] 任艳荣, 刘玉标, 顾小芸. 弹塑性海床上的管土相互作用分析[J]. 工程力学, 2004, 21(2):84-88. Ren Yanrong, Liu Yubiao, Gu Xiaoyun. Analysis of pipe/soil interaction on elastic-plastic seabed[J]. Engineering Mechanics, 2004, 21(2):84-88. (in Chinese)
[12] Robert D J. A modified Mohr-Coulomb model to simulate the behavior of pipelines in unsaturated soil[J]. Computers and Geotechnics, 2017, 91:146-160.
[13] Yu J X, Zhao Y Y, Li T Y, et al. A three-dimensional numerical method to study pipeline deformations due to transverse impacts from dropped anchors[J]. Thin-Walled Structures, 2016, 103:22-32.
[14] 杨秀娟, 闫涛, 修宗祥, 等. 海底管道受坠物撞击时的弹塑性有限元分析[J]. 工程力学, 2011, 28(6):189-194. Yang Xiujuan, Yan Tao, Xiu Zongxiang, et al. Elastic-plastic finite element analysis of submarine pipeline impacted by dropped objects[J]. Engineering Mechanics, 2011, 28(6):189-194. (in Chinese)
[15] Lou M, Ming H Q. Dynamic response analysis of the submarine suspended pipeline impacted by dropped objects based on LS-DYNA[J]. Marine science bulletin, 2015, 17(2):39-55.
[16] Gao P, Duan M L, Gao Q, et al. A prediction method for anchor penetration depth in clays[J]. Ships and offshore structures, 2016, 11(7):782-789.
[17] 王懿, 贾旭, 黄俊, 等. 基于CEL的船舶抛锚入泥度分析[J]. 石油机械, 2014, 42(12):44-47. Wang Yi, Jia Xu, Huang Jun, et al. Analysis of penetration depth of dropped anchor based on CEL[J]. China Petroleum Machinery, 2014, 42(12):44-47. (in Chinese)
[18] DNV-RP-F107 Risk assessment of pipelines protection[S]. Oslo:Det Norske Veritas, 2010.
[19] 庄元, 宋少桥. 海底管线埋深问题研究[J]. 大连海事大学学报, 2013, 39(1):61-64. Zhuang Yuan, Song Shaoqiao. Study on the depth of submerged pipeline[J]. Jounral of Dalian Maritime University, 2013, 39(1):61-64. (in Chinese)
[20] 李书兆, 李亚, 鲁晓兵. 桩基贯入过程中土体大变形分析与流动机理研究[J]. 工程力学, 2017, 34(6):157-165. Li Shuzhao, Li Ya, Lu Xiaobing. Large deformation analysis and flow mechanism study of the soil during pile penetration[J]. Engineering Mechanics, 2017, 34(6):157-165. (in Chinese)
[21] Cosham A, Hopkins P. The effect of dents in pipelines-guidance in the pipeline defect assessment manual[J]. International Journal of Pressure Vessels and Piping, 2004, 81(2):127-139.
[22] 王自力, 蒋志勇, 顾永宁. 船舶碰撞数值仿真的附加质量模型[J]. 爆炸与冲击, 2002, 22(4):321-326. Wang Zili, Jiang Zhiyong, Gu Yongning. The added mass model of ships collision simulation[J]. Explosion and shock waves, 2002, 22(4):321-326. (in Chinese)
[23] Noh W F. CEL:A time-dependent, two-spacedimensional, coupled eulerian-lagrangian code[C]. Methods in Computational Physics. New York:Academic Press, 1964, 3:117-179.
[24] Jiang H, Xie Y. A note on the Mohr-Coulomb and Drucker-Prager strength criteria[J]. Mechanics Research Communications, 2011, 38(4):309-314.
[25] 殷齐麟, 董胜, 樊敦秋. 复杂地层中自升式平台插桩的数值模拟[J]. 工程力学, 2016, 33(9):204-211. Yin Qilin, Dong Sheng, Fan Dunqiu. Nuerical simulation of penetration of jack-up platform in complex foundation soils[J]. Enginnering Meachinics, 2016, 33(9):204-211. (in Chinese)
[26] Zeinoddin M, Arabzadeh H, Ezzati M, et al. Response of submarine pipelines to impacts from dropped objects:Bed flexibility effects[J]. Internationl Journal of Impact Engineering, 2013, 62(4):129-141.
[27] GBT 546-2016, 霍尔锚[S]. 北京:中国标准出版社, 2016. GBT 546-2016, Hall anchor[S]. Beijing:Standards Press of China, 2016. (in Chinese)
[1] 李林峰, 马蒙, 刘维宁, 杜林林. 不同激励作用下钢弹簧浮置板轨道减振效果研究[J]. 工程力学, 2018, 35(S1): 253-258.
[2] 焦春硕, 王浩霖, 董胜. 深海重型设备浮力辅助安装模拟研究[J]. 工程力学, 2018, 35(S1): 344-348.
[3] 刘顺, 黄生洪, 李秋胜, 陈伏彬. 基于欧拉多相流模型的桥梁主梁三维风驱雨数值研究[J]. 工程力学, 2017, 34(4): 63-71.
[4] 闫秋实, 邵慧芳, 李亮. 冲击荷载作用下装配式钢筋混凝土梁力学性能研究[J]. 工程力学, 2017, 34(4): 196-205.
[5] 王秀丽, 王昊, 施刚, 赵丽洁. 单层网壳结构冲击响应模式及临界冲击动能研究[J]. 工程力学, 2015, 32(7): 81-87.
[6] 徐龙军, 刘庆阳, 谢礼立. 海底跨断层输气管道动力特性数值模拟与分析[J]. 工程力学, 2015, 32(12): 99-107.
[7] 田力,朱聪. 碰撞冲击荷载作用下钢筋混凝土柱的损伤评估及防护技术[J]. 工程力学, 2013, 30(9): 144-150,157.
[8] 孙胜男,苏志彬. 随机激励作用下悬浮隧道锚索的振动响应[J]. 工程力学, 2013, 30(3): 476-480.
[9] 沈峰, 章青, 黄丹, 赵晶晶. 冲击荷载作用下混凝土结构破坏过程的近场动力学模拟[J]. 工程力学, 2012, 29(增刊I): 12-15.
[10] 胡狄, 何勇, 金伟良. 基于向量式有限元的Spar扶正预测及强度分析[J]. 工程力学, 2012, 29(8): 333-339, 345.
[11] 林晓平;刘增华;雷振坤;武湛君. 水下带粘弹性层输油管道中纵向导波的传播特性[J]. 工程力学, 2012, 29(4): 244-250.
[12] 周健南;金丰年;范华林;浦奎英;许宏发. 震后地下拱结构的抗冲击波动载能力评估[J]. 工程力学, 2012, 29(2): 159-164,.
[13] 杨秀娟;闫 涛;修宗祥;闫相祯;冯永训. 海底管道受坠物撞击时的弹塑性有限元分析[J]. 工程力学, 2011, 28(6): 189-194.
[14] 孙胜男;苏志彬;白卫峰. 轴向激励下悬浮隧道锚索参数振动分析[J]. 工程力学, 2011, 28(6): 170-175.
[15] 夏运强;唐筱宁;蒋凯辉. 防风单点系泊系统试验研究[J]. 工程力学, 2011, 28(6): 182-188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 罗冠炜;褚衍东;谢建华. 多自由度含间隙振动系统周期运动的Hopf-pitchfork余维二分岔[J]. 工程力学, 2006, 23(1): 99 -106 .
[2] 许福友;马如进;陈艾荣;王达磊. 苏通大桥全桥气弹模型设计与模态调试[J]. 工程力学, 2009, 26(12): 150 -154, .
[3] 张季超;丁晓敏;庞永师;李伍平;童华炜;郑先昌;许 勇. 广州市城市地下空间开发利用分析[J]. 工程力学, 2009, 26(增刊Ⅱ): 106 -114 .
[4] 杨端生;蔺文峰;黄 炎. 转动弹性支承矩形板自由振动的一般解析解法[J]. 工程力学, 2010, 27(03): 15 -018 .
[5] 熊志远;王正道;李豫彰;李郑发;畅若妮. 单向EMC层合板折叠变形时面内/面外屈曲形式的判据[J]. 工程力学, 2010, 27(6): 183 -188 .
[6] 李 伟;温泽峰;吴 磊;金学松. 滚滑接触下钢轨热力耦合分析[J]. 工程力学, 2010, 27(8): 199 -204, .
[7] 薛 飞;束国刚;余伟炜;王兆希;蒙新明;遆文新. 热老化对核电主管道材料冲击性能影响及老化趋势研究[J]. 工程力学, 2010, 27(8): 246 -250 .
[8] 李庆华;徐世烺. 超高韧性水泥基复合材料在受弯构件中应用研究[J]. 工程力学, 2010, 27(增刊Ⅱ): 235 -239 .
[9] 邓玉姝;夏 禾;善田康雄;井上宽美;齐 琳. 城市轨道交通梯形轨枕轨道高架桥梁试验研究[J]. 工程力学, 2011, 28(3): 49 -054 .
[10] 沈纪苹;杨 骁. 两种波浪理论下铰接塔平台的非线性运动特性分析[J]. 工程力学, 2011, 28(6): 242 -248 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日