工程力学 ›› 2019, Vol. 36 ›› Issue (5): 19-27.doi: 10.6052/j.issn.1000-4750.2018.03.0181

• 基本方法 • 上一篇    下一篇

TATB基PBX在不同围压下的Boltzmann-P本构模型及其数值计算方法

袁洪魏, 赵龙, 董天宝, 颜熹琳, 唐维   

  1. 中国工程物理研究院化工材料研究所, 四川, 绵阳 621999
  • 收稿日期:2018-03-30 修回日期:2018-12-11 出版日期:2019-05-25 发布日期:2019-04-29
  • 通讯作者: 唐维(1981-),男,四川人,副研究员,博士,主要从事含能材料力学性能研究(E-mail:tangwei@caep.cn). E-mail:tangwei@caep.cn
  • 作者简介:袁洪魏(1992-),男,四川人,研究实习员,硕士,从事含能材料力学性能数值算法研究(E-mail:yuanhw@caep.cn);赵龙(1989-),男,河南人,工程师,硕士,从事含能材料力学性能研究(E-mail:zhaolong@caep.cn);董天宝(1989-),男,陕西人,助理研究员,硕士,从事含能材料力学性能研究(E-mail:dongtianbao@caep.cn);颜熹琳(1982-),男,湖南人,副研究员,本科,从事含能材料力学性能研究(Email:linyxl_306@sina.com).
  • 基金资助:
    中国工程物理研究院化工材料研究所第三批先行技术专项《炸药件环境应力筛选方法研究》

BOLTZMANN-P MODEL FOR THE MECHANICAL CONSTITUTIVE BEHAVIOR OF TATB-BASED PBX UNDER CONFINED COMPRESSION

YUAN Hong-wei, ZHAO Long, DONG Tian-bao, YAN Xi-lin, TANG Wei   

  1. Institute of Chemical Materials, CAEP, Mianyang, Sichuan 621999, China
  • Received:2018-03-30 Revised:2018-12-11 Online:2019-05-25 Published:2019-04-29

摘要: 围压对于PBX材料的力学性能影响显著,围压影响的实质为静水压力的影响。该文基于Boltzmann本构模型,建立了考虑静水压力影响的TATB基PBX准静态Boltzmann-P非线性弹性本构模型,提出了针对该本构模型的非线性计算方法,采用Mises等效应力-应变并引入泊松比提出了一维本构模型转化为三维模型的数值方法,然后通过二次开发实现了本构模型以及相应算法的实际应用。通过对单位体积单元进行计算,在无围压条件以及围压两种条件下Boltzmann-P模型描述精度均高于Boltzmann模型,验证了Boltzmann-P本构模型及相应算法与所开发程序的正确性。

关键词: PBX, 围压, 本构模型, Boltzmann-P, 数值实现

Abstract: Aiming at the characteristic that confining pressure has a significant influence on the mechanical properties of Polymer bonded explosive (PBX), a quasi-static constitutive model considering the effect of hydrostatic pressure called the Boltzmann-P model was proposed on the basis of the existing Boltzmann model. A nonlinear calculation method for the constitutive model and a numerical method of transforming the one-dimensional constitutive model into the three-dimensional model by using Mises equivalent stress strain and introducing Poisson's ratio are developed. Through secondary development, the constitutive model and the practical application of the corresponding algorithm were realized. Through the calculation of unit elements, it is shown that the description accuracy of the Boltzmann-P model is better than that of the Boltzmann model without and with confining pressure. The rationality and accuracy of the Boltzmann-P constitutive model, the corresponding algorithm and the developed subroutine are verified.

Key words: PBX, confining pressure, constitutive model, Boltzmann-P, numerical realization

中图分类号: 

  • TQ560.1
[1] 唐明峰, 庞海燕, 蓝林钢, 等. RDX基PBX的本构行为与应变历史、应变率效应[J]. 含能材料, 2016, 24(9):832-837. Tang Mingfeng, Pang Haiyan, Lan Lingang, et al. Constitutive behavior of RDX-based PBX with loading-history and loading-rate effects[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2016, 24(9):832-837. (in Chinese)
[2] Kakavas P A. Mechanical properties of propellant composite materials reinforced with ammonium perchlorate particles[J]. International Journal of Solids & Structures, 2014, 51(10):2019-2026.
[3] Boddy R L, Gould P J, Jardine A P, et al. Damage in Polymer Bonded Energetic Composites:Effect of Loading Rate[J]. Journal of Dynamic Behavior of Materials, 2016, 2(1):157-165.
[4] Xiao Y C, Sun Y, Wang Z J. Investigating the static and dynamic tensile mechanical behaviour of polymer -bonded explosives[J]. Strain, 2018, 54(2):e12262.
[5] Xiao Y C, Sun Y, Li X, et al. Dynamic mechanical behavior of PBX[J]. Propellants Explosives Pyrotechnics, 2016, 41(4):629-636.
[6] 陈蓉, 卢芳云, 林玉亮, 等. 一种含铝炸药压缩力学性能和本构关系研究[J]. 含能材料, 2007, 15(5):460-463. Chen Rong, Lu Fangyun, Lin Yuliang, et al. Mechanical behavior and constitutive model of pressed aluminized explosive[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2007, 15(5):460-463. (in Chinese)
[7] 王礼立, 施绍裘. ZWT非线性热粘弹性本构关系的研究与应用[J]. 宁波大学学报:理工版, 2000(B12):141-149. Wang Lili, Shi Shaoqiu. Research and application of ZWT nonlinear thermo-viscoelastic constitutive model[J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2000(B12):141-149. (in Chinese)
[8] 卢强, 王占江, 王礼立, 等. 基于ZWT方程的线黏弹性球面波分析[J]. 爆炸与冲击, 2013, 33(5):463-470. Lu Qiang, Wang Zhanjiang, Wang Lili, et al. Analysis of linear visco-elastic spherical waves based on ZWT constitutive equation[J]. Explosion and Shock Waves, 2013, 33(5):463-470. (in Chinese)
[9] Feng Zhenzhou, Wang Xinjun, Wang Fusheng, et al. Implementation and its application in finite element analysis of constitutive model for ZWT nonlinear viscoelastic material[J]. Journal of Materials Science and Engineering, 2007, 25(2):269-272.
[10] Clements B. ViscoSCRAM:past, present and future[P]. LANL, LA-UR-11-1245, 2011.
[11] 罗景润. PBX的损伤、断裂及本构关系研究[D]. 绵阳:中国工程物理研究院, 2001. Luo Jingrun. Study on damage, fracture and constitutive relation of PBX[D]. Mianyang:China Academy of Engineering Physics, 2001. (in Chinese)
[12] 郭虎. 高聚物粘结炸药微裂纹统计本构模型研究[D]. 绵阳:中国工程物理研究院, 2012. Guo Hu. Study on the visco statistical crack mechanics for PBXs[D]. Mianyang:China Academy of Engineering Physics, 2012. (in Chinese)
[13] 张延耿, 楼建锋, 周婷婷, 等. PBX炸药含各向异性损伤的黏弹性统计微裂纹本构模型初步研究[J]. 高压物理学报, 2016, 30(4):301-310. Zhang Yangeng, Lou Jianfeng, Zhou Tingting, et al. Initial study on constitutive model of PBXs via viscoelastic statistical crack mechanics including anisotropic damage[J]. Chinese Journal of High Pressure Physics, 2016, 30(4):301-310. (in Chinese)
[14] 高军, 黄再兴. PBX炸药粘弹性损伤本构模型参数敏感度分析[J]. 工程力学, 2015, 32(2):201-206. Gao Jun, Huang Zaixing. Parameter sensitivity analysis for viscoelastic damage constitutive model for PBX materials[J]. Engineering Mechanics, 2015, 32(2):201-206. (in Chinese)
[15] 高军, 黄再兴. PBX炸药粘弹性损伤本构模型的参数识别[J]. 工程力学, 2013, 30(7):299-304. Gao Jun, Huang Zaixing. Parameter identification for viscoelastic damage constitutive of PBX[J]. Engineering Mechanics, 2013, 30(7):299-304. (in Chinese)
[16] 成丽蓉, 施惠基. PBX炸药含裂纹扩展损伤的粘塑性本构关系[J]. 含能材料, 2015, 23(10):999-1003. Cheng Lirong, Shi Huiji. Elastic-viscoplastic constitutive coupled micro-cracks propagation damage of PBX[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2015, 23(10):999-1003. (in Chinese)
[17] 周栋, 黄风雷, 姚惠生. PBX炸药粘弹性损伤本构关系研究[J]. 北京理工大学学报, 2007, 27(11):945-947. Zhou Dong, Huang Fenglei, Yao Huisheng. Study on the visco-Elastic constitutive model of PBX[J]. Transactions of Beijing Institute of Technology, 2007, 27(11):945-947. (in Chinese)
[18] 冯希金, 危银涛, 李志超, 等. 未硫化橡胶非线性粘弹性本构模型研究[J]. 工程力学, 2016, 33(7):212-219. Feng Xijin, Wei Yintao, Li Zhichao, et al. Research on nonlinear viscoelastic constitutive model for uncured rubber[J]. Engineering Mechanics, 2016, 33(7):212-219. (in Chinese)
[19] 董满生, 鹿婧, 凌天清, 等. 考虑温度效应的沥青混合料参数模型[J]. 工程力学, 2016, 33(6):180-185. Dong Mansheng, Lu Jin, Ling Tianqing, et al. Parametric model for asphalt mixtures considering temperature effect[J]. Engineering Mechanics, 2016, 33(6):180-185. (in Chinese)
[20] Donald A Wiegand, Brett Reddingius. Mechanical properties of confined explosives[J]. Journal of Energetic Materials, 2005, 23(2):75-98.
[21] Wiegand D A, Pinto J, Nicolaides S. The mechanical response to TNT and a composite, composition B, of TNT and RDX to compressive stress:I. Uniaxial stress and fracture[J]. Journal of Energetic Materials, 1991, 9(1/2):19-80.
[22] Pinto J, Wiegand D A. The mechanical response of TNT and A composite, composition B, of TNT and RDX to compressive stress:Ⅱ Triaxial stress and yield[J]. Journal of Energetic Materials, 1991, 9(3):205-263.
[23] Wiegand D A, Pinto J. The mechanical response of TNT and A composite, composition B, of TNT and RDX to compressive stress:Ⅲ Dependence on processing and composition[J]. Journal of Energetic Materials, 1991, 9(5):349-413.
[24] 唐维. TATB基PBX炸药的准静态本构模型与强度准则[D]. 南京:南京理工大学, 2016.Tang Wei. Constitutive models and strength criterions of a TATB-based PBX under quasi-static loading[D]. Nanjing:Nanjing University of Science & Technology, 2016. (in Chinese)
[25] Tang Wei, Yan Xilin, Wen Maoping, et al. Boltzmann function based nonlinear tension-compression constitutive model for typical polymer bonded explosives under quasi-static loading[J]. Chinese Journal of Energetic Materials (English Version), 2017, 25(8):689-693.
[26] 温茂萍, 李明, 庞海燕, 等. 炸药件力学性能各向同异性试验研究[J]. 含能材料, 2006, 14(4):286-289. Wen Maoping, Li Ming, Pang Haiyan, et al. Study on mechanical isotropic of PBX[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2006, 14(4):286-289. (in Chinese)
[27] 温茂萍, 庞海燕, 敬仕明, 等. 等静压与模压JOB-9003炸药力学性能比较研究[J]. 含能材料, 2004, 12(6):338-341. Wen Maoping, Pang Haiyan, Jing Shiming, et al. Comparative study on mechanical properties of two kinds of JOB-9003 shaped separately by isostatic liquid pressing and mould pressing[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2004, 12(6):338-341. (in Chinese)
[1] 曹胜涛, 路德春, 杜修力, 赵密, 程星磊. 基于GPU并行计算的地下结构非线性动力分析软件平台开发[J]. 工程力学, 2019, 36(2): 53-65,86.
[2] 白卫峰, 刘霖艾, 管俊峰, 姚贤华. 基于统计损伤理论的硫酸盐侵蚀混凝土本构模型研究[J]. 工程力学, 2019, 36(2): 66-77.
[3] 余志武, 单智. 混凝土随机损伤本构模型研究新进展[J]. 工程力学, 2018, 35(8): 1-8,13.
[4] 王宇航, 余洁, 吴强. 复杂循环路径下钢材弹塑性屈曲行为研究[J]. 工程力学, 2018, 35(7): 24-38.
[5] 余志武, 吴玲玉, 单智. 混凝土确定性及随机性损伤本构模型研究进展[J]. 工程力学, 2017, 34(9): 1-12.
[6] 闫维明, 谢志强, 宋林琳, 何浩祥. 冷弯薄壁型钢锁铆连接力学性能及其本构模型研究[J]. 工程力学, 2017, 34(8): 133-143.
[7] 路德春, 罗磊, 王欣, 杜修力. 土与结构接触面土体软/硬化本构模型及数值实现[J]. 工程力学, 2017, 34(7): 41-50.
[8] 施刚, 朱希. 高强度结构钢材单调荷载作用下的本构模型研究[J]. 工程力学, 2017, 34(2): 50-59.
[9] 王萌, 钱凤霞, 杨维国, 杨璐. 低屈服点钢材与Q345B和Q460D钢材本构关系对比研究[J]. 工程力学, 2017, 34(2): 60-68.
[10] 池寅, 黄乐, 余敏. 基于ABAQUS的钢-聚丙烯混杂纤维混凝土损伤塑性本构模型取值方法研究[J]. 工程力学, 2017, 34(12): 131-142.
[11] 曹胜涛, 李志山. 约束混凝土单轴弹塑性损伤本构模型[J]. 工程力学, 2017, 34(11): 116-125.
[12] 南波, 武岳, 孙浩田. 缠绕型CFRP圆管轴压力学性能[J]. 工程力学, 2017, 34(1): 92-100.
[13] 梅竹, 吴斌, 杨格. 钢筋混凝土结构材料本构模型参数的在线识别[J]. 工程力学, 2016, 33(7): 108-115.
[14] 冯希金, 危银涛, 李志超, KALISKE Michael. 未硫化橡胶非线性粘弹性本构模型研究[J]. 工程力学, 2016, 33(7): 212-219.
[15] 黄晓莹, 陶俊林. 三种建筑钢筋材料高应变率下拉伸力学性能研究[J]. 工程力学, 2016, 33(7): 184-189.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程麦理. 黄土场地桩基横向力学行为数值模拟[J]. 工程力学, 0, (): 0 .
[2] 张建春, 张大山, 董毓利, 王卫华. 火灾下钢-混凝土组合梁内力变化的试验研究 [J]. 工程力学, 0, (): 0 .
[3] 柯晓军, 苏益声, 商效瑀, 孙海洋. 钢管混凝土组合柱压弯性能试验及承载力计算[J]. 工程力学, 2018, 35(12): 134 -142 .
[4] 卜一之, 金 通, 李 俊, 张清华. 纵肋与横隔板交叉构造细节穿透型疲劳裂纹扩展特性及其加固方法研究 [J]. 工程力学, 0, (): 0 .
[5] 钱海峰 赵婧同 王元清 王登峰. 考虑除尘器箱体墙板-立柱协同受力时立柱在横向荷载作用下的内力计算[J]. 工程力学, 0, (): 0 .
[6] 蒋庆, 王瀚钦, 冯玉龙, 种迅. 损伤可控的含减震外挂墙板RC 框架结构抗震性能分析[J]. 工程力学, 0, (): 0 .
[7] 谢昭波, 解琳琳, 林元庆, 陆新征. 典型框架‐核心筒单重与双重抗侧力体系的抗震性能与剪力分担研究[J]. 工程力学, 0, (): 0 .
[8] 曹胜涛, 李志山, 刘付钧, 黄忠海. 基于Bouc-Wen 模型的消能减震结构显式非线性时程分析 [J]. 工程力学, 0, (): 0 .
[9] 焦驰宇, 马银强, 刘陆宇, 龙佩恒, 侯苏伟. FPS支座双向加载拟静力试验与数值模拟研究 [J]. 工程力学, 0, (): 0 .
[10] 赵志鹏, 张瑞甫, 陈清军, 潘超, 王超. 基于减震比设计方法的惯容减震结构分析 [J]. 工程力学, 0, (): 0 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日