工程力学 ›› 2019, Vol. 36 ›› Issue (5): 216-225,234.doi: 10.6052/j.issn.1000-4750.2018.03.0171

• 土木工程学科 • 上一篇    下一篇

考虑土质边坡多失效模式的区域概率风险分析方法

杨智勇1,2, 李典庆1,2, 曹子君1,2, 唐小松1,2   

  1. 1. 武汉大学水资源与水电工程科学国家重点实验室, 武汉 430072;
    2. 武汉大学工程风险与防灾研究所, 武汉 430072
  • 收稿日期:2018-03-26 修回日期:2018-09-03 出版日期:2019-05-25 发布日期:2019-03-29
  • 通讯作者: 李典庆(1975-),男,湖北竹溪人,教授,博士,从事岩土工程可靠度分析与风险控制研究(E-mail:dianqing@whu.edu.cn). E-mail:dianqing@whu.edu.cn
  • 作者简介:杨智勇(1989-),男,山西柳林人,研究助理,博士,从事岩土工程可靠度与风险分析研究(E-mail:yzywhu@163.com);曹子君(1987-),男,山东临沂人,副教授,博士,从事岩土工程可靠度与风险控制研究(E-mail:zijuncao@whu.edu.cn);唐小松(1986-),男,广西桂林人,副教授,博士,从事岩土工程可靠度和风险分析研究(E-mail:xstang@whu.edu.cn).
  • 基金资助:
    国家重点研发计划项目(2017YFC1501301);国家自然科学基金项目(51579190,51779189)

REGION PROBABILITY METHOD FOR SOIL SLOPE RISK ASSESSMENT INVOLVING MULTIPLE FAILURE MODES

YANG Zhi-yong1,2, LI Dian-qing1,2, CAO Zi-jun1,2, TANG Xiao-song1,2   

  1. 1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China;
    2. Institute of Engineering Risk and Disaster Prevention, Wuhan University, Wuhan 430072, China
  • Received:2018-03-26 Revised:2018-09-03 Online:2019-05-25 Published:2019-03-29

摘要: 针对现有边坡风险分析仅考虑单一失效模式及风险分析结果难以被工程师理解等问题,提出了考虑边坡多失效模式的区域概率风险分析方法。首先给出了区域概率的概念,建立了以区域概率定量表征边坡稳定性的方法,推导了基于区域概率的边坡系统风险评价公式,探讨了该公式的适用性。在此基础上采用直接蒙特卡罗模拟计算边坡区域失效概率。最后以一不排水黏性土坡为例阐明了所提方法的有效性。结果表明:区域概率风险分析方法为表征边坡的关键失效区提供了一种简单、直接的可视化工具,为工程师制定合理的边坡加固设计方案提供了参考依据。基于区域概率风险分析方法的边坡系统风险评价公式不仅能够有效地回避边坡风险评价中多滑面间安全系数及滑块体积之间相关性计算问题,而且能够准确地量化边坡多破坏模式的系统风险。传统的风险评价方法可能显著低估边坡系统风险,使得边坡设计方案偏危险。边坡失效概率最大的滑面不一定是边坡失效风险最大的滑面,在边坡加固设计中,失效风险较大的滑面也应该予以关注。

关键词: 边坡稳定性, 多失效模式, 蒙特卡洛模拟, 区域概率, 系统风险

Abstract: Conventional slope system risk assessment commonly concerns a single failure mode in each numerical realization and their reliability analysis results are difficult to be understood by geotechnical engineers with weak mathematical background. To address the difficulties, this study proposes a slope system risk estimation method based on region probability incorporating multiple failure modes in the slope system. First, the concept of region probability is provided. The method for representing slope stability quantitively with region probability is then established. The formula for estimating of slope system risk based on region probability is derived and its applicability is discussed. Monte Carlo simulation (MCS) is then employed to calculate the region failure probability. An undrained cohesive slope cut is used to demonstrate the performance of the proposed approach. The results indicate that the region failure probability provides a simple, straightforward and visual tool for the identification of key dangerous regions of the slope, which in turn can give insights into the design of countermeasures for slope reinforcement and risk mitigation. In addition, the region failure probability-based risk assessment method can properly estimate the slope system risk and effectively avoid sophisticated correlations among the sliding blocks and the factor of the large number of potential slip surfaces. Conventional risk assessment methods may lead to a significant underestimation of slope system risk, which may incur an under-design of slope and is detrimental to the slope system. The slip surface associated with the largest risk may not be the slip surface associated with the largest failure possibility. The slip surface associated with the largest risk deserves the same attention as that associated with the largest failure possibility in the slope design and reinforcement.

Key words: slope stability, multiple failure slip surfaces, Monte Carlo simulation, region failure probability, system risk

中图分类号: 

  • TU43
[1] Zhu H, Zhang L M, Xiao T, et al. Generation of multivariate cross-correlated geotechnical random fields[J]. Computers and Geotechnics, 2017, 86:95-107.
[2] 左自波, 张璐璐, 程演, 等. 基于MCMC法的非饱和土渗流参数随机反分析[J]. 岩土力学, 2013, 34(8):2393-2400. Zuo Zibo, Zhang Lulu, Cheng Yan, et al. Probabilistic back analysis of unsaturated soil seepage parameters based on Markov chain Monte Carlo method[J]. Rock and Soil Mechanics, 2013, 34(8):2393-2400. (in Chinese)
[3] Huang J, Griffiths D V. Modelling spatial variability in geotechnical engineering[J]. Georisk:Assessment and Management of Risk for Engineered Systems and Geohazards, 2016, 10(1):1.
[4] Lacasse S, Nadim F, Kalsnes B. Living with landslide risk[J]. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 2010, 41(4):1-13.
[5] Huang J, Lyamin A V, Griffiths D V, et al. Quantitative risk assessment of landslide by limit analysis and random fields[J]. Computers and Geotechnics, 2013, 53:60-67.
[6] Li D, Xiao T, Cao Z, et al. Enhancement of random finite element method in reliability analysis and risk assessment of soil slopes using Subset Simulation[J]. Landslides, 2016, 13(2):293-303.
[7] 蒋水华, 杨建华, 姚池, 等. 考虑土体参数空间变异性边坡失稳风险定量评估[J]. 工程力学, 2018, 35(1):136-147. Jiang Shuihua, Yang Jianhua, Yao Chi, et al. Quantitative risk assessment of slope failure considering spatial variability of soil properties[J]. Engineering Mechanics, 2018, 35(1):136-147. (in Chinese)
[8] Cheng H Z, Chen J. Risk assessment of slope failure considering the variability in soil properties[J]. Computers and Geotechnics, 2018, 103:61-72.
[9] Li L, Chu X. Risk assessment of slope failure by representative slip surfaces and response surface function[J]. KSCE Journal of Civil Engineering, 2016,20(5):1783-1792.
[10] Zhang J, Huang H W. Risk assessment of slope failure considering multiple slip surfaces[J]. Computers and Geotechnics, 2016, 74:188-195.
[11] Jiang S, Huang J, Yao C, et al. Quantitative risk assessment of slope failure in 2-D spatially variable soils by limit equilibrium method[J]. Applied Mathematical Modelling, 2017, 47:710-725.
[12] Cheng Y M, Lansivaara T, Wei W B. Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods[J]. Computers and Geotechnics, 2007, 34(3):137-150.
[13] Reale C, Xue J, Gavin K. System reliability of slopes using multimodal optimization[J]. Géotechnique, 2016, 66(5):413-423.
[14] Tun Y W, Pedroso D M, Scheuermann A, et al. Probabilistic reliability analysis of multiple slopes with genetic algorithms[J]. Computers and Geotechnics, 2016, 77:68-76.
[15] 张鲁渝. 边坡稳定分析软件ZSlope的开发[J]. 岩石力学与工程学报, 2004, 23(16):2830-2835. Zhang Luyu. Development of software zslope for slope stability analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(16):2830-2835. (in Chinese)
[16] 闫超, 刘松玉, 籍晓蕾. 一种基于强度折减法的次级滑动面分析方法研究[J]. 岩土力学, 2016, 37(4):935-942. Yan Chao, Liu Songyu, Ji Xiaolei. Research on a secondary sliding surface analysis approach based on strength reduction method[J]. Rock and Soil Mechanics, 2016, 37(4):935-942. (in Chinese)
[17] 薛海斌, 党发宁, 尹小涛, 等. 基于岩土材料软化特性的滑坡多级滑动面分析方法研究[J]. 岩土力学, 2015, 36(11):3235-3242. Xue Haibin, Dang Faning, Yin Xiaotao, et al. Research on analytical method of multi-slip surfaces of landslide based on softening characteristics of geomaterial[J]. Rock and Soil Mechanics, 2015, 36(11):3235-3242. (in Chinese)
[18] 蒋水华, 李典庆, 周创兵, 等. 考虑自相关函数影响的边坡可靠度分析[J]. 岩土工程学报, 2014, 36(3):508-518. Jiang Shuihua, Li Dianqing, Zhou Chuangbing, et al. Slope reliability analysis considering effect of autocorrelation functions[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3):508-518. (in Chinese)
[19] 李典庆, 蒋水华, 周创兵, 等. 考虑参数空间变异性的边坡可靠度分析非侵入式随机有限元法[J]. 岩土工程学报, 2013, 35(8):1413-1422. Li Dianqing, Jiang Shuihua, Zhou Chuangbing, et al. Reliability analysis of slopes considering spatial variability of soil parameters using non-intrusive stochastic finite element method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8):1413-1422. (in Chinese)
[20] Cho S E. Probabilistic assessment of slope stability that considers the spatial variability of soil properties. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(7):975-984.
[21] Chowdhury R N, Xu D W. Geotechnical system reliability of slopes[J]. Reliability Engineering & System Safety, 1995, 47(3):141-151.
[22] Oka Y, Wu T H. System reliability of slope stability[J]. Journal of Geotechnical Engineering, 1990, 116(8):1185-1189.
[23] Christian J T. Issues of reliability in stability of slopes[J]. InGeo-Congress 2013:Stability and Performance of Slopes and Embankments Ⅲ, 2013:2246-2261.
[24] Juang C H, Zhang J, Gong W. Reliability-based assessment of stability of slopes[J]. IOP Conference Series:Earth and Environmental Science, 2015, 26(1):12006.
[25] Phoon K, Kulhawy F H. Characterization of geotechnical variability[J]. Canadian Geotechnical Journal, 1999, 36(4):612-624.
[26] 杨智勇, 曹子君, 李典庆, 等. 颗粒接触摩擦系数空间变异性对颗粒流双轴数值试验的影响[J]. 工程力学, 2017, 34(5):235-246. Yang Zhiyong, Cao Zijun, Li Dianqing, et al. Effect of spatially variable friction coefficient of granular materials on its macro-mechanical behaviors using biaxial compression numerical simulation[J]. Engineering Mechanics, 2017, 34(5):235-246. (in Chinese)
[27] 祁小辉, 李典庆, 周创兵, 等. 考虑土体空间变异性的边坡最危险滑动面随机分析方法[J]. 岩土工程学报, 2013, 35(04):745-753. Qi Xiaohui, Li Dianqing, Zhou Chuangbing, et al. Stochastic analysis method of critical slip surfaces in soil slopes considering spatial variability[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4):745-753. (in Chinese)
[28] 闫澍旺, 朱红霞, 刘润. 天津港土性相关距离的计算研究和统计分析[J]. 岩土力学, 2009, 30(7):2179-2185. Yan Shuwang, Zhu Hongxia, Liu Run. Numerical studies and statistic analyses of correlation distances of soil properties in Tianjin Port[J]. Rock and Soil Mechanics, 2009, 30(7):2179-2185. (in Chinese)
[29] 田密, 李典庆, 曹子君, 等. 基于贝叶斯理论的土性参数空间变异性量化方法[J]. 岩土力学, 2017, 38(11):3355-3362. Tian Mi, Li Dianqing, Cao Zijun, et al. Quantification of inherent spatial variability of soil parameters using Bayesian approaches[J]. Rock and Soil Mechanics, 2017, 38(11):3355-3362. (in Chinese)
[30] 邓志平, 李典庆, 曹子君, 等. 考虑地层变异性和土体参数变异性的边坡可靠度分析[J]. 岩土工程学报, 2017, 39(6):986-995. Deng Zhiping, Li Dianqing, Cao Zijun, et al. Slope reliability analysis considering geological uncertainty and spatial variability of soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6):986-995. (in Chinese)
[31] 李静萍, 程勇刚, 李典庆, 等. 基于多重响应面法的空间变异土坡系统可靠度分析[J]. 岩土力学, 2016, 37(1):147-155, 165. Li Jingping, Cheng Yonggang, Li Dianqing, et al. System reliability analysis of spatially variable soil slopes using the multiple response surfaces method[J]. Rock and Soil Mechanics, 2016, 37(1):147-155, 165. (in Chinese)
[32] 王贺, 张洁, 陈飞扬. 强降雨条件下花岗岩残积土边坡的时变可靠度[J]. 武汉大学学报(工学版), 2016, 49(5):763-767. Wang He, Zhang Jie, Chen Feiyang. Time-dependent reliability of slopes made of completely decomposed granite under intense rainfall[J]. Engineering Journal of Wuhan University, 2016, 49(5):763-767. (in Chinese)
[33] 罗正东, 董辉, 陈铖, 等. 基于克里金模型的边坡稳定可靠度分析方法[J]. 岩土力学, 2015, 36(增刊1):439-444. Luo Zhengdong, Dong Hui, Chen Cheng, et al. An analytic method for slope stability reliability based on Kriging model[J]. Rock and Soil Mechanics, 2015, 36(Suppl 1):439-444. (in Chinese)
[34] Zhu D, Griffiths D V, Huang J, et al. Probabilistic stability analyses of undrained slopes with linearly increasing mean strength[J]. Géotechnique, 2017, 67(8):733-746.
[35] Ang A H S, Tang W H. Probability concepts in engineering:emphasis on applications in civil and environmental engineering[M]. Hoboken, New Jersey:John Wiley & Sons, Inc, 2007.
[36] Wenping G, Lei W, Sara K, et al. Robust geotechnical design of earth slopes using fuzzy sets[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(1):04014084.
[37] Ali A, Huang J, Lyamin A V, et al. Simplified quantitative risk assessment of rainfall-induced landslides modelled by infinite slopes[J]. Engineering Geology, 2014, 179:102-116.
[38] Jiang S H, Li D Q, Cao Z J, et al. Efficient system reliability analysis of slope stability in spatially variable soils using Monte Carlo simulation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(2):04014096.
[39] US Army Corps of Engineers. Engineering and design:introduction to probability and reliability methods for use in geotechnical engineering[Z]. Engineer Technical Letter 1110-2-547. Washington, DC:Department of the Army, 1997.
[1] 刘欣欣, 唐春安, 龚斌, 于庆磊. 基于DDD离心加载法的黑山铁矿西帮边坡稳定性研究[J]. 工程力学, 2018, 35(1): 191-200.
[2] 蒋水华, 杨建华, 姚池, 黄劲松. 考虑土体参数空间变异性边坡失稳风险定量评估[J]. 工程力学, 2018, 35(1): 136-147.
[3] 吕大刚;于晓辉;王光远. 基于FORM 有限元可靠度方法的结构整体概率抗震能力分析[J]. 工程力学, 2012, 29(2): 1-8.
[4] 卢 昊;张义民;黄贤振;朱丽莎. 多失效模式典型结构系统可靠性稳健设计方法研究[J]. 工程力学, 2011, 28(8): 226-231.
[5] 于晓辉;吕大刚;王光远. 多级力控制随机Pushover方法[J]. 工程力学, 2010, 27(增刊I): 6-010.
[6] 蒋斌松;吕爱钟;蔡美峰. 纯粘土边坡稳定性的解析计算[J]. 工程力学, 2003, 20(5): 204-208.
[7] 朱乃龙;张世雄. 岩石深凹边坡稳定性坡角的初步确定方法[J]. 工程力学, 2003, 20(5): 130-133.
[8] 李大望;霍达;胡灿阳. 渐硬恢复力滑移体系稳态随机响应的解析预测[J]. 工程力学, 2003, 20(1): 72-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曾宪武;韩大建. 多重双频率调谐质量阻尼器制振性能及对桥梁抖振的控制[J]. 工程力学, 2006, 23(1): 74 -80 .
[2] 罗银淼;应祖光. 水闸钢拉索的不稳定振动分析[J]. 工程力学, 2006, 23(2): 153 -156 .
[3] 隋允康;彭细荣;叶红玲. 应力约束全局化处理的连续体结构ICM拓扑优化方法[J]. 工程力学, 2006, 23(7): 1 -7 .
[4] 孙振忠;杨玉英. 薄板剪应力起皱研究[J]. 工程力学, 2006, 23(7): 35 -39 .
[5] 陈勇军;郑津洋;邓贵德;孙国有. 单层厚壁圆筒弹性动应力的简化计算方法[J]. 工程力学, 2006, 23(11): 45 -51 .
[6] 巨玉文;&#;李克非;韩建国. 混凝土早龄拉伸徐变的试验与理论研究[J]. 工程力学, 2009, 26(9): 43 -049 .
[7] 王国杰;郑建岚. 混凝土结构早龄期应力相关应变现场监测与分析[J]. 工程力学, 2009, 26(9): 61 -066, .
[8] 张 辉;范宝春;陈志华;董 刚. 基于伴随流场的流动优化控制[J]. 工程力学, 2009, 26(9): 231 -236 .
[9] 张文芳;贾淑贤;李国胜. 一种全密封锁位型摩擦阻尼隔震支座的试验研究[J]. 工程力学, 2009, 26(11): 95 -101 .
[10] 潘秀珍;郝际平;王德法;朱轶韵;高 杰. 单斜杆耗能器偏心支撑结构的抗震性能研究[J]. 工程力学, 2010, 27(6): 57 -064 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日