工程力学 ›› 2019, Vol. 36 ›› Issue (5): 130-136.doi: 10.6052/j.issn.1000-4750.2018.03.0169

• 土木工程学科 • 上一篇    下一篇

考虑尺寸效应的深受弯构件受剪模型分析

魏慧, 吴涛, 刘洋, 刘喜   

  1. 长安大学建筑工程学院, 陕西, 西安 710061
  • 收稿日期:2018-03-26 修回日期:2018-10-04 出版日期:2019-05-25 发布日期:2019-03-28
  • 通讯作者: 吴涛(1976-),男,安徽霍山人,教授,工学博士,院长,从事钢筋混凝土结构抗震研究(E-mail:wutao@chd.edu.cn). E-mail:wutao@chd.edu.cn
  • 作者简介:魏慧(1990-),女,新疆巴楚人,讲师,工学博士,从事钢筋混凝土结构抗震研究(E-mail:weihuichd@163.com);刘洋(1994-),男,陕西西安人,博士生,从事钢筋混凝土结构抗震研究(E-mail:13891705608@163.com);刘喜(1986-),男,陕西延安人,副教授,工学博士,从事钢筋混凝土结构抗震研究(E-mail:lliuxii@163.com).
  • 基金资助:
    国家自然科学基金项目(51878054,51578072,51708036);中央高校基本业务费项目(300102288401,300102289113)

A SHEAR DESIGN MODEL FOR RC DEEP FLEXURAL MEMBERS CONSIDERING THE SIZE EFFECT

WEI Hui, WU Tao, LIU Yang, LIU Xi   

  1. School of Civil Engineering, Chang'an University, Shaanxi, Xi'an 710061, China
  • Received:2018-03-26 Revised:2018-10-04 Online:2019-05-25 Published:2019-03-28

摘要: 深受弯构件斜截面受剪机理复杂且受尺寸效应影响显著,缺乏准确、合理的受剪计算模型。结合Tan-Cheng模型中对混凝土软化作用和深受弯构件尺寸效应的全面考虑优势,在深入研究混凝土斜压杆倾角α和构件复合抗拉强度ft对深受弯构件受剪承载力影响的基础上,简化压杆顶部节点区高度lcα的关系,考虑腹筋有效作用区域修正复合抗拉强度ft计算模型,提出了不影响精度前提下的修正Tan-Cheng模型。研究表明:基于国内外308组深受弯构件受剪试验数据计算结果,建议模型计算精度等同Tan-Cheng模型,并能够准确考虑尺寸效应影响,但计算过程较为简洁;通过与现有典型各国规范建议模型对比分析表明,计算结果较规范计算值更接近试验值,能够更准确地对深受弯构件的受剪承载力进行预测。

关键词: 钢筋混凝土, 深受弯构件, 受剪承载力, Tan-Cheng模型, 尺寸效应

Abstract: There is a lack of accurate and reasonable shear design models for reinforced concrete deep flexural members such as typical D-region shear components with complicated force mechanism and significant size effect. In combination with the advantages of the Tan-Cheng model that fully considers the softening effect of concrete and the size effect of struts, and on the basis of the deep understanding of the effect of diagonal strut angle α and composite tensile stress ft on the shear strength of deep flexural members, the relationship between the top node height lc and α was simplified and a modified Tan-Cheng model was proposed by reconsidering the effective action region of web reinforcement. The predictions of 308 deep flexural members from either foreign or domestic source indicate that the proposed model has a comparable accuracy with the Tan-Cheng model, and it can accurately consider the size effect of concrete struts through a concise calculation process. The comparison between the proposed model and current code provisions shows that the predictions by the proposed model has a better agreement with the test results. It further indicates that the proposed model can reasonably predict the shear strength of deep flexural members.

Key words: reinforced concrete, deep flexural members, shear bearing capacity, Tan-Cheng model, size effect

中图分类号: 

  • TU375.1
[1] ACI Committee 318:Building code requirement for structural concrete (ACI 318-14) and commentary[S]. American Concrete Institute, 2014.
[2] CSA A23.3-04, Design of concrete structures[S]. Canadian Standards Association, 2004.
[3] The European Standard EN 1992-1-1:2004, Eurocode 2. Design of concrete structures[S]. British Standards Institution, 2004.
[4] Kani G N J. How safe are our large reinforced concrete beams?[C]//ACI Journal Proceedings, 1967, 64(3):128-141.
[5] Bazant Z P, Kazemi M T. Size effect on diagonal shear failure of beams without stirrups[J]. ACI Structural Journal, 1991, 88(3):268-276.
[6] Collins M, Kuchma D. How safe are our large, lightly reinforced concrete beams, slabs, and footings?[J]. ACI Structural Journal, 1999, 96(4):482-490.
[7] Tan K H, Lu H Y. Shear behavior of large reinforced concrete deep beams and code comparisons[J]. ACI Structural Journal, 1999, 96(5):836-845.
[8] Matsuo M, Lertsrisakulrat T, Yanagawa A, et al. Shear behavior in RC deep beams with stirrups[J]. Transactions of the Japan Concrete Institute, 2002, 23(5):385-390.
[9] Birrcher D B, Tuchscherer R G, Huizinga M, et al. Depth effect in deep beams[J]. ACI Structural Journal, 2014, 111(4):731-740.
[10] Tan K H, Tong K, Tang C Y. Direct strut-and-tie model for prestressed deep beams[J]. Journal of Structural Engineering, ASCE, 2001, 127(9):1076-1084.
[11] Tan K H, Cheng G H. Size effect on shear strength of deep beams:Investigating with strut-and-tie model[J]. Journal of Structural Engineering, ASCE, 2006, 132(5):673-685.
[12] Kim J K, Yi S T, Park C K, Eo S H. Size effect on compressive strength of plain and spirally reinforced concrete cylinders[J]. ACI Structural Journal, 1999, 96(1):88-94.
[13] Matamoros A B, Wong K H. Design of simply supported deep beams using strut-and-tie models[J]. ACI Structural Journal, 2003, 100(6):704-712.
[14] GB50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2010. GB50010-2010, Code for design of concrete structures[S]. Beijing:China Architectural & Building Press, 2010. (in Chinese)
[15] Smith K N, Vantsiotis A S. Shear strength of deep beams[J]. ACI Structural Journal, 1982, 79(3):201-213.
[16] Kong F K, Robins P J, Cole D F. Web reinforcement effects on deep beams[C]//ACI Journal Proceedings. 1970, 67(12):1010-1018.
[17] Clark A P. Diagonal tension in reinforced concrete beams[C]//ACI Journal Proceedings, 1951, 48(10):145-156.
[18] Gardoni P, Der Kiureghian A, Mosalam K M. Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations[J]. Journal of Engineering Mechanics, ASCE, 2002, 128(10):1024-1038.
[19] Aguilar G, Matamoros A B, Parra-Montesinos G J, et al. Experimental evaluation of design procedures for shear strength of deep reinforced concrete beams[J]. ACI Structural Journal, 2002, 99(4):539-548.
[20] Quintero-Febres C G, Parra-Montesinos G, Wight J K. Strength of struts in deep concrete members designed using strut-and-tie method[J]. ACI Structural Journal, 2006, 103(4):577-586.
[21] Tan K H, Tang C Y, Tong K. Shear strength predictions of pierced deep beams with inclined web reinforcement[J]. Magazine of Concrete Research, 2004, 56(8):443-452.
[22] Subedi N K, Vardy A E, Kubotat N. Reinforced concrete deep beams some test results[J]. Magazine of Concrete Research, 1986, 38(137):206-219.
[23] Ramakrishnan V, Ananthanarayana Y. Ultimate strength of deep beams in shear[C]//ACI Journal Proceedings, 1968, 65(2):87-98.
[24] 刘立新, 谢丽丽, 陈萌. 钢筋混凝土深受弯构件受剪性能的研究[J]. 建筑结构, 2000, 30(10):19-22. Liu Lixin, Xie Lili, Chen Meng. The shear strength capability of reinforced concrete deep flexural members[J]. Building Structure, 2000, 30(10):19-22. (in Chinese)
[25] 龚绍熙. 钢筋混凝土深梁在对称集中荷载下抗剪强度的研究[J]. 郑州工学院学报, 1982, 1:52-68. Gong Shaoxi. The shear strength capability of reinforced concrete deep beam under symmetric concentrated loads[J]. Journal of Zhengzhou Technology Institute, 1982, 1:52-68. (in Chinese)
[26] Walravena J, Lehwalter N. Size effects in short beams loaded in shear[J]. ACI Structural Journal, 1994, 91(5):585-593.
[1] 李冬, 金浏, 杜修力, 刘晶波, 张帅, 余文轩. 考虑细观组分影响的混凝土宏观力学性能理论预测模型[J]. 工程力学, 2019, 36(5): 67-75.
[2] 肖宇哲, 李易, 陆新征, 任沛琪, 何浩祥. 混凝土梁柱子结构连续倒塌动力效应的试验研究[J]. 工程力学, 2019, 36(5): 44-52.
[3] 于云龙, 杨勇, 薛亦聪, 刘亚平, 蒋雪雅. 型钢混凝土空腹叠合梁受剪承载力试验研究[J]. 工程力学, 2019, 36(3): 214-223.
[4] 张艺欣, 郑山锁, 裴培, 李磊, 秦卿, 董立国. 钢筋混凝土柱冻融损伤模型研究[J]. 工程力学, 2019, 36(2): 78-86.
[5] 闫培雷, 孙柏涛. 基于环境激励法的高层钢筋混凝土剪力墙结构自振周期经验公式研究[J]. 工程力学, 2019, 36(2): 87-95.
[6] 曹亮, 张海燕, 吴波. 纤维编织网增强地聚物砂浆加固钢筋混凝土梁受剪性能研究[J]. 工程力学, 2019, 36(1): 207-215.
[7] 陈嵘, 雷俊卿. 变轴力钢筋混凝土墩柱抗震性能研究[J]. 工程力学, 2018, 35(S1): 239-245.
[8] 纪晓东, 程小卫, 徐梦超. 小剪跨比钢筋混凝土墙拉剪性能试验研究[J]. 工程力学, 2018, 35(S1): 53-61.
[9] 吴志军, 张鹏林, 刘泉声, 李万峰, 江维中. 基于零厚度粘聚力单元的钢筋混凝土板在爆炸荷载下的动态破坏过程分析[J]. 工程力学, 2018, 35(8): 79-90,110.
[10] 高佳明, 刘伯权, 黄华, 周长泉. 带板钢筋混凝土框架连续倒塌理论分析[J]. 工程力学, 2018, 35(7): 117-126.
[11] 侯和涛, 朱文灿, 曲哲, 崔士起. 屈曲约束支撑钢筋混凝土框架结构干式柔性梁柱节点的试验研究[J]. 工程力学, 2018, 35(6): 151-161.
[12] 何政, 孙丞江. 应用改进非线性分层壳模型的超高层框架-核心筒结构强震响应分析[J]. 工程力学, 2018, 35(6): 173-181.
[13] 金浏, 杜敏, 杜修力, 李振宝. 箍筋约束混凝土圆柱轴压破坏尺寸效应行为[J]. 工程力学, 2018, 35(5): 93-101.
[14] 余波, 陈冰, 唐睿楷. 钢筋混凝土梁抗剪承载力计算的概率模型[J]. 工程力学, 2018, 35(5): 170-179.
[15] 孙小云, 韩建平, 党育, 周颖. 地震动持时对考虑梁柱节点区不同破坏模式RC框架的地震易损性影响[J]. 工程力学, 2018, 35(5): 193-203.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 朱张峰, 郭正兴. 考虑竖向与水平接缝的工字形装配式混凝土剪力墙抗震性能试验研究[J]. 工程力学, 2019, 36(3): 139 -148 .
[2] 吕大刚 , 刘 洋, 于晓辉, . 第二代基于性能地震工程中的地震易损性模型及正逆概率风险分析 [J]. 工程力学, 0, (): 0 .
[3] 周颖, 吴 浩, 顾安琪. 地震工程:从抗震、减隔震到可恢复性 [J]. 工程力学, 0, (): 0 .
[4] 许本胜, 臧朝平, 缪辉, 张根辈. 结构动力鲁棒优化设计方法综述[J]. 工程力学, 2019, 36(4): 24 -36 .
[5] 覃茜, 徐千军. 成层混凝土的剪切强度和II 型断裂韧度 [J]. 工程力学, 0, (): 0 .
[6] 张永平, 徐荣桥. 考虑拉力修正抗弯刚度的缆索频率计算 [J]. 工程力学, 0, (): 0 .
[7] 荣华, 王玉珏, 赵馨怡, 佘吉. 不同粗糙度岩石-混凝土界面断裂特性研究 [J]. 工程力学, 0, (): 0 .
[8] 尹阳阳, 胡少伟, 王宇航. 自重对混凝土三点弯曲梁断裂性能的影响 [J]. 工程力学, 0, (): 0 .
[9] 罗一帆, 孙洪鑫, 王修勇. 电磁调谐双质阻尼器的H2参数优化及对结构减震分析[J]. 工程力学, 2019, 36(4): 89 -99 .
[10] 徐龙河, 杨雪飞. 侧移曲线对基于位移设计的多层自复位摩擦耗能支撑钢框架抗震性能影响研究 [J]. 工程力学, 0, (): 0 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日