工程力学 ›› 2019, Vol. 36 ›› Issue (5): 120-129,147.doi: 10.6052/j.issn.1000-4750.2018.03.0166

• 土木工程学科 • 上一篇    下一篇

含接缝的膨润土砌块缓冲材料愈合过程计算

许韬1, 白冰1, 刘月妙2   

  1. 1. 北京交通大学土木建筑工程学院, 北京 100044;
    2. 核工业北京地质研究院, 北京 100029
  • 收稿日期:2018-03-26 修回日期:2018-11-08 出版日期:2019-05-25 发布日期:2019-03-28
  • 通讯作者: 白冰(1966-),男,内蒙古人,教授,博士,博导,主要从事岩土介质热力学特性研究(E-mail:bbai@bjtu.edu.cn). E-mail:bbai@bjtu.edu.cn
  • 作者简介:许韬(1993-),男,江西人,博士生,主要从事岩土介质数值模拟研究(E-mail:ironway@163.com);刘月妙(1968-),女,河北人,高工,博士,主要从事核废物地质处置工作(E-mail:liuyuemiao@163.com).
  • 基金资助:
    国家自然科学基金项目(51878035,51678043);北京市自然科学基金项目(8182046)

COMPUTATION FOR SELF-HEALING PROCESS IN UNSATURATED BENTONITE BUFFER MATERIAL WITH BLOCK JOINTS

XU Tao1, BAI Bing1, LIU Yue-miao2   

  1. 1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China;
    2. Beijing Research Institute of Uranium Geology, Beijing 100029
  • Received:2018-03-26 Revised:2018-11-08 Online:2019-05-25 Published:2019-03-28

摘要: 在高放废物处置库的设计中,缓冲材料一般以膨润土砌块拼接的形式回填在废物罐周围,罐体、砌块、围岩之间的缝隙通过接缝材料进行填充。该文通过对GMZ01膨润土已有的试验数据进行整理,结合孔隙介质热-水-力(THM)耦合的基本理论,建立了含接缝的缓冲材料的THM过程耦合计算模型,利用Comsol Multiphysics平台进行计算,研究了接缝对缓冲材料膨胀、渗透和导热性能的影响,以及愈合效应的产生,并重点分析了接缝的类型、数量、干密度和宽度,以及砌块的拼接形式对渗透性能的影响。接缝的存在会极大的增加缓冲材料的渗透性,但是随着时间推移,接缝的渗透率会显著降低。材料最终的平均渗透率主要取决于平均干密度,而接缝的分布和砌块的拼接方式影响较小。

关键词: 缓冲材料, 热-水-力耦合, 接缝, 愈合效应, 砌块拼接

Abstract: In the design of a high-level radioactive waste repository, the buffer material is generally backfilled around the waste canister in the form of bentonite block splicing, and the gaps between the tank body, the block and the surrounding rock are filled with the joint material. Based on the experimental data of GMZ01 bentonite and the basic theory of thermo-hydro-mechanical coupling (THM) in porous media, a THM coupling calculation model was established, numerical calculations are performed on the Comsol Multiphysics platform. The effects of joints on the expansion, the permeability and thermal conductivity of buffer materials, and the self-healing effects were studied. The types, the influence of quantities, dry density and width of joints, as well as the splicing forms of blocks on the permeability were analyzed. The joints can greatly increase the permeability of the buffer material, but the permeability of the joints decreases significantly over time. The final average permeability of the material mainly depends on the average dry density, while the distribution of the joints and the splicing of the block are less affected.

Key words: buffer material, thermo-hydro-mechanical coupling, joints, self-healing effect, block splicing

中图分类号: 

  • TU443
[1] 牛文杰, 叶为民, 陈宝. 高压实膨润土的非饱和渗透膨胀模型[J]. 岩土力学, 2009, 30(增2):88-92. Niu Wenjie, Ye Weimin, Chen Bao. Experimentally derived model for suction-induced permeability, swell and microstructure behaviour of unsaturated compacted bentonite[J]. Rock and Soil Mechanics, 2009, 30(Suppl 2):88-92. (in Chinese)
[2] Bai Bing, Shi Xiaoying. Experimental study on the consolidation of saturated silty clay subjected to cyclic thermal loading[J]. Geomechanics and Engineering, 2017, 12(4):707-721.
[3] 陈宝, 陈建琴, 曹永超. 接缝对高压实膨润土工程屏障自封闭性能的影响[J]. 岩石力学与工程学报, 2012, 31(3):618-624. Chen Bao, Chen Jianqin, CAO Yongchao. Influence of joint on self-sealing behaviour of highly compacted bentonite in engineering barrier[J]. Chinses Journal of Rock Mechanics and Engineering, 2012, 31(3):618-624. (in Chinese)
[4] Ferrari A, Seiphoori A, Rüedi J, et al. Shot-clay MX-80 bentonite:An assessment of the hydro-mechanical behaviour[J]. Engineering Geology, 2014, 173(2):10-18.
[5] Chen L, Liu Y M, Wang J, et al. Investigation of the thermal-hydro-mechanical (THM) behavior of GMZ bentonite in the China-Mock-up test[J]. Engineering Geology, 2014, 172(8):57-68.
[6] Zhang H, Wang X, Ping L, et al. Sealing and healing of compacted bentonite block joints in HLW disposal[J]. Chinese Journal of Rock Mechanics & Engineering, 2016. 35(Suppl 2):3605-3614
[7] Chen L, Wang J, Liu Y, et al. Numerical thermo-hydro-mechanical modeling of compacted bentonite in china-mock-up test for deep geological disposal[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2012, 4(2):183-192.
[8] Zhao J, Chen L, Collin F, et al. Numerical modeling of coupled thermal-hydro-mechanical behavior of GMZ bentonite in the China-Mock-up test[J]. Engineering Geology, 2016, 214(30):116-126.
[9] Bai B. Fluctuation responses of saturated porous media subjected to cyclic thermal loading[J]. Computers & Geotechnics, 2006, 33(8):396-403.
[10] Bai Bing, Rao Dengyu, Xu Tao, et al. SPH-FDM boundary for the analysis of thermal process in homogeneous media with a discontinuous interface[J]. International Journal of Heat and Mass Transfer, 2018,117:517-526.
[11] 刘月妙, 蔡美峰, 王驹, 高放废物处置库缓冲材料导热性能研究[J]. 岩石力学与工程学报, 2007, 26(增2):3891-3896. Liu Yuemiao, Cai Meifeng, Wang Ju. Thermal properties of buffer material for high-level radioactive waste disposal[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(Suppl 2):3891-3896. (in Chinese)
[12] Richards L A. Capillary conduction of liquids in porous mediums[J]. Physics, 1931, 1(5):318-333.
[13] Ye W M, Cui Y J, Qian L X, et al. An experimental study of the water transfer through confined compacted GMZ bentonite[J]. Engineering Geology, 2009, 108(3-4):169-176.
[14] Lloret A, Villar M V. Advances on the knowledge of the thermo-hydro-mechanical behavior of heavily compacted FEBEX bentonite[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2007, 32(8):701-715
[15] 蔡国庆, 赵成刚, 刘艳. 非饱和土土-水特征曲线的温度效应[J]. 岩土力学, 2010, 31(4):1055-1060. Cai Guoqing, Zhao Chenggang, Liu Yan. Temperature effects on soil-water characteristic curve of unsaturated soils[J]. Rock and Soil Mechanics, 2010, 31(4):1055-1060. (in Chinese)
[16] van Genuchten. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(44):892-898.
[17] Chen B, Qian L, Ye W. et al. Soil-water characteristic curves of Gaomiaozi bentonite[J]. Chinese Journal of Rock Mechanics and Engineering, 2006. 25(4):788-793.
[18] 叶为民, T.Schanz, 钱丽鑫,等. 高压实高庙子膨润土GMZ01的膨胀力特征[J]. 岩石力学与工程学报, 2007, 26(增2):3861-3865. Ye Weimin, T.Schanz, Qian Lixin, et al. Characteristics of welling pressure of densely compacted Gaomiaozi bentonite GMZ01[J]. Chinses Journal of Rock Mechanics and Engineering, 2007, 26(Suppl 2):3861-3865. (in Chinese)
[19] Alonso E E, Vaunat J, Gens A. Modelling the mechanical behaviour of expansive clays[J]. Engineering Geology, 1999, 54(1/2):173-183.
[20] Alonso E E, Gens A, Josa A. A constitutive model for partially saturated soils[J]. Géotechnique, 1990, 40(3):405-430.
[21] Mckinstry H A. Thermal expansion of clay minerals[J]. American Mineralogist, 1965, 50:212-222.
[22] 刘月妙, 蔡美峰, 王驹,等. 高放废物地质处置库预选缓冲材料压缩性能研究[J]. 铀矿地质, 2007, 23(2):91-95. Liu Yuemiao, Cai Meifeng, Wang Ju, et al. Compressibility of buffer material for HLW disposal in China[J]. Uranium Geology, 2007, 23(2):91-95. (in Chinese)
[23] Bolzon G, Schrefler B A, Zienkiewicz O C. Elastoplastic soil constitutive laws generalized to partially saturated states[J]. Géotechnique, 1996, 46(2):279-289.
[24] 张发忠, 方振东, 秦冰, 等. 不同温度下膨润土膨胀变形行为研究[J]. 后勤工程学院学报, 2017, 33(2):23-27. Zhang Fazhong, Fang Zhendong, Qin Bing, et al. Study on bentonite's swelling strain behaviour at different temperatures[J]. Journal of Logistical Engineering University, 2017, 33(2):23-27. (in Chinese)
[25] 陈皓. 高放废物地质库缓冲材料在高温高压下的变形强度特性研究[D]. 广西:广西大学, 2015. Chen Hao. Research of strength and volume change of buffer material in high temperature and pressure from high-level radioactive waste repository[D]. Guangxi:Guangxi University, 2015. (in Chinese)
[26] Reijonen H M, Alexander W R, Marcos N, et al. Complementary considerations in the safety case for the deep repository at Olkiluoto, Finland:support from natural analogues[J]. Swiss Journal of Geosciences, 2015, 108(1):111-120.
[27] Bai B, Xu T, Guo Z. An experimental and theoretical study of the seepage migration of suspended particles with different sizes[J]. Hydrogeology Journal, 2016, 24(8):1-16.
[28] Villar M V, Lloret A. Dismantling of the first section of the FEBEX in situ, test:THM laboratory tests on the bentonite blocks retrieved[J]. Physics & Chemistry of the Earth, 2007, 32(8):716-729.
[1] 朱张峰, 郭正兴. 考虑竖向与水平接缝的工字形装配式混凝土剪力墙抗震性能试验研究[J]. 工程力学, 2019, 36(3): 139-148.
[2] 孙建, 邱洪兴, 谭志成, 蒋洪波. 采用螺栓连接的工字形全装配式RC剪力墙试验研究[J]. 工程力学, 2018, 35(8): 172-183,191.
[3] 初明进,刘继良,崔会趁,侯建群,周育泷,张中勇. 装配整体式双向孔空心模板剪力墙受剪性能试验研究[J]. 工程力学, 2013, 30(7): 219-229.
[4] 李宏江 王岐峰 卢达义. 在役PC斜拉桥主梁湿接缝的破坏机制分析[J]. 工程力学, 2012, 29(增刊Ⅱ): 210-215,232.
[5] 葛继平;王志强. 干接缝节段拼装桥墩振动台试验研究[J]. 工程力学, 2011, 28(9): 122-128.
[6] 赵大洲;景来红. 盾构隧道管片衬砌的平板壳-接缝元-地基系统模型研究[J]. 工程力学, 2011, 28(6): 110-117.
[7] 葛继平;王志强. 干接缝节段拼装桥墩集中塑性铰模型的地震响应分析[J]. 工程力学, 2010, 27(8): 185-190.
[8] 周玉民;谈至明;刘少文;牛开民. 水泥混凝土路面角隅应力分析[J]. 工程力学, 2010, 27(4): 105-110.
[9] 蒋应军;张伟宏. 传力杆对接缝传荷能力及临界荷位处应力的影响[J]. 工程力学, 2009, 26(3): 21-025.
[10] 赵彤;闫维明;高维成. 刚性路面接缝传力效能分析的一种近似方法[J]. 工程力学, 1998, 15(1): 128-132.
[11] 赵光恒;杜成斌. 分缝结构的非线性响应分析[J]. 工程力学, 1994, 11(3): 28-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 裴星洙;张立. 点焊箱型截面薄壁构件的翘曲扭转研究[J]. 工程力学, 2006, 23(3): 56 -62 .
[2] 陈常松;陈政清;颜东煌. 悬索桥主缆初始位形的悬链线方程精细迭代分析法[J]. 工程力学, 2006, 23(8): 62 -68 .
[3] 徐洋;姜洪洲;丛大成;韩俊伟. 基于LQG/LTR方法的结构主动控制的研究[J]. 工程力学, 2006, 23(7): 130 -135 .
[4] 殷志祥;孙芳锦. 倒伞式可展索膜结构静力特性分析[J]. 工程力学, 2006, 23(7): 160 -164 .
[5] 许蔚;姚学锋;金观昌. 功能梯度材料II型动态裂纹尖端的焦散线分析[J]. 工程力学, 2006, 23(9): 30 -35 .
[6] 陈勇军;郑津洋;邓贵德;孙国有. 单层厚壁圆筒弹性动应力的简化计算方法[J]. 工程力学, 2006, 23(11): 45 -51 .
[7] 彭芳乐;李福林;江智森;龙冈文夫. 任意加载条件下土工合成材料的弹粘塑性及本构模型[J]. 工程力学, 2009, 26(8): 50 -058 .
[8] 夏 平;龙述尧;崔洪雪. 用无网格LRPIM分析中厚板的自由振动[J]. 工程力学, 2009, 26(12): 12 -016 .
[9] 潘 继;蔡国平. 桁架结构作动器优化配置的粒子群算法[J]. 工程力学, 2009, 26(12): 35 -039 .
[10] 周 云;吴从晓;邓雪松. 铅粘弹性阻尼器的开发、研究与应用[J]. 工程力学, 2009, 26(增刊Ⅱ): 80 -090 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日