工程力学 ›› 2019, Vol. 36 ›› Issue (5): 110-119.doi: 10.6052/j.issn.1000-4750.2018.03.0164

• 土木工程学科 • 上一篇    下一篇

配筋超高性能混凝土梁受弯性能及承载力研究

梁兴文1, 汪萍1, 徐明雪1, 王照耀1, 于婧1, 李林2   

  1. 1. 西安建筑科技大学土木工程学院, 陕西, 西安 710055;
    2. 陕西建研结构工程股份有限公司, 陕西, 西安 710082
  • 收稿日期:2018-03-26 修回日期:2018-12-19 出版日期:2019-05-25 发布日期:2019-04-09
  • 通讯作者: 梁兴文(1952-),男,陕西人,教授,硕士,博导,从事建筑结构及抗震研究(E-mail:liangxingwen2000@163.com). E-mail:liangxingwen2000@163.com
  • 作者简介:汪萍(1992-),女,安徽人,硕士生,从事新材料及结构性能研究(E-mail:337565854@qq.com);徐明雪(1991-),男,江苏人,硕士生,从事土木工程新材料结构性能研究(E-mail:Xumingxue1991@163.com);王照耀(1992-),男,陕西人,硕士生,从事纤维混凝土结构性能研究(E-mail:wangzhaoyao1992@163.com);于婧(1982-),女,河南人,副教授,博士,硕导,从事新型结构及材料性能研究(E-mail:yujing1506@163.com);李林(1970-),男,陕西人,教授级高工,硕士,从事建筑结构检测鉴定及修复加固研究(E-mail:lilin6832@163.com).
  • 基金资助:
    国家自然科学基金项目(51278402)

INVESTIGATION ON FLEXUREL CAPACITY OF RENINFORCED ULTRA HIGH PERFORMANCE CONCRETE BEAMS

LIANG Xing-wen1, WANG Ping1, XU Ming-xue1, WANG Zhao-yao1, YU Jing1, LI Lin2   

  1. 1. College of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China;
    2. Shaanxi Jianyan Structural Engineering Co., Ltd., Xi'an, Shaanxi 710082, China
  • Received:2018-03-26 Revised:2018-12-19 Online:2019-05-25 Published:2019-04-09

摘要: 对4根跨高比为16的配筋超高性能混凝土(Ultra High Performance Concrete,简称UHPC)简支梁进行了受弯性能试验及受弯承载力分析,试件变化参数为钢纤维体积掺量和纵向受拉钢筋配筋率。试验结果表明:钢纤维体积掺量从3%提高到5%时,试件的开裂荷载提高了6.0%~11%,极限荷载仅提高了1.4%~2.5%;纵筋配筋率为3.21%的梁发生适筋破坏,配筋率为6.74%的梁发生部分超筋破坏;增加纵筋配筋率可显著提高UHPC梁的受弯承载力(提高34.9%~36.5%)。基于截面平衡条件、平截面假定以及UHPC和钢筋材料本构关系,建立了UHPC梁受弯承载力计算模型,受弯承载力计算值与试验值吻合较好。

关键词: 大跨高比梁, 超高性能混凝土, 高体积纤维掺量, 抗裂性能, 受弯承载力

Abstract: 4 span-depth ratio of 16 reinforced ultra-high-performance concrete beams were fabricated for the investigation of their flexural behavior and flexural capacity. The variable parameters studied in the test were steel fiber volume fraction and longitudinal reinforcement ratio. Testing results show that increasing steel fiber volume fraction from 3% to 5% could increase the resistance of cracking (cracking load increased by 6.0% to 11%). However, it had little effect on the ultimate load capacity (only increased 1.4%~2.5%). The failure modes of the beams with the longitudinal reinforcement ratio of 3.21% and 6.74% were classified as under-reinforced failure and limited over-reinforced failure respectively. Increasing the reinforcement ratio could enhance the flexural capacity of reinforced UHPC beams (increased by 34.9%~36.5%). A tentative flexural capacity calculation model of reinforced UHPC beams was proposed based on the section equilibrium condition, the assumption of plane section, the material constitutive relation of UHPC, and reinforcement. The calculation results of flexural capacity are found agreeing well with the experimental results.

Key words: beam with small span-to-depth, ultra-high-performance concrete, high steel fiber volume fraction, crack resistance, flexural capacity

中图分类号: 

  • TU375.1
[1] Russell H G. Ultra-high performance concrete:A Stateof-the-art report for the bridge community[R]. Research, development, and technology turner-fair bank highway research center, McLean, Virginia, 2013:16-19.
[2] 金凌志, 李月霞, 祁凯能, 等. 高强钢筋RPC简支梁抗剪承载力及延性研究[J]. 工程力学, 2015, 32(S1):209-214. Jin Lingzhi, Li Yuexia, Qi Kaineng, et al. Research on shear bearing capacity and ductility of high strength reinforced RPC beam[J]. Engineering Mechanics, 2015, 32(S1):209-214. (in Chinese)
[3] 徐世烺, 王洪昌. 超高韧性水泥基复合材料与钢筋粘结本构关系的试验研究[J]. 工程力学, 2008, 25(11):53-61. Xu Shilang, Wang Hongchang. Experimental Study on bond-slip between ultra-high toughness cementitious composites and steel bar[J]. Engineering Mechanics, 2008, 25(11):53-61. (in Chinese)
[4] 邓明科, 卜新星, 潘姣姣, 等. 型钢高延性混凝土短柱抗震性能试验研究[J]. 工程力学, 2017, 34(1):163-170. Deng Mingke, Bu Xinxing, Pan Jiaojiao, et al. Experimental study on seismic behavior of steel reinforced high ductile concrete short columns[J]. Engineering Mechanics, 2017, 34(1):163-170. (in Chinese)
[5] 赖建中, 朱耀勇, 谭剑敏. 超高性能混凝土在埋置炸药下的抗爆试验及数值模拟[J]. 工程力学, 2016, 33(5):193-199. Lai Jianzhong, Zhu Yaoyong, Tan Jianmin. Experimental and simulation of ultra-high-performance concrete subjected to blast by embedded explosive[J]. Engineering Mechanics, 2016, 33(5):193-199. (in Chinese)
[6] Yoo D Y, Banthia N, Yoon Y S. Predicting service deflection of ultra-high-performance fiber-reinforced concrete beams reinforced with GFRP bars[J]. Composites Part B Engineering, 2016, 99(6):381-397.
[7] 杨剑. CFRP预应力筋超高性能混凝土梁受力性能研究[D]. 长沙:湖南大学, 2007. Yang Jian. Flexural behavior of ultra high performance concrete beams prestressed with CFRP tendons[D]. Changsha:Hunan University, 2017. (in Chinese)
[8] 邓宗才, 王义超, 肖锐, 等. 高强钢筋UHPC梁抗弯性能试验研究与理论分析[J]. 应用基础与工程科学学报, 2015, 23(1):68-78. Deng Zongcai, Wang Yichao, Xiao Rui, et al. Flexural test and theoretical analysis of UHPC beams with high strength rebars[J]. Journal of Basic Science and Engineering, 2015, 23(1):68-78. (in Chinese)
[9] Singh M, Sheikh A H, Ali M S M, et al. Experimental and numerical study of the flexural behaviour of ultra-high performance fibre reinforced concrete beams[J]. Construction & Building Materials, 2017, 138(5):12-25.
[10] Kaptijn N, Blom J. A new bridge deck for the Kaag Bridges the first CRC (Compact Reinforced Composite) application in civil infrastructure[J]. Science and Engineering of Composite Materials, 2002, 10(6):397-402.
[11] GB 50010-2010,混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[12] GB/T 31387-2015, 活性粉末混凝土[S]. 北京, 中国标准出版社, 2015. GB/T 31387-2015, Reactive powder concrete[S]. Beijing:China Standard Press, 2015. (in Chinese)
[13] GB/T 50152-2012, 混凝土结构试验方法标准[S]. 北京:中国建筑工业出版社, 2012. GB/T 50152-2012, Standard for test method of concrete structures[S]. Beijing:China Architecture & Building Press, 2012.(in Chinese)
[14] Lok T S, Xiao J R. Flexural strength assessment of steel fiber reinforced concrete[J]. Journal of Materials in Civil Engineering, 1999, 11(3):188-196.
[15] 曾建仙, 吴炎海, 林清. 掺钢纤维活性粉末混凝土的受压力学性能研究[J]. 福州大学学报, 2005, 33(S1):132-137. Zeng Jianxian, Wu Yanhai, Lin Qing. Researches on the compressive mechanics properties of steel fiber RPC[J]. Journal of Fuzhou University, 2005, 33(Sl):132-137. (in Chinese)
[16] Al-Hassani H M, Khalil W I, Danha L S. Prediction of the nominal bending moment capacity for plain and singly reinforced rectangular RPC beam sections[J]. Engineering & Technology Journal, Part(A), 2015, 33(5):1113-1130.
[17] Soranakom C, Yekani-Fard M, Mobasher B. Development of design guidelines for strain softening fiber reinforced concrete[C]. 7th International Symposium of Fiber Reinforced Concrete:Design and Applications BEFIB 2008, Editor:R. Gettu, Sept. 2008:513-523.
[18] 黄伟, 张丽, 吴明超. HRB500级高性能钢筋钢纤维混凝土梁受弯性能试验研究[J]. 工业建筑, 2011, 41(11):76-80. Huang Wei, Zhang Li, Wu Mingchao. Experimental investigation on flexural behavior of steel fiber RC beams with grade HRB500 reinforcement of low-cost and high-performance[J]. Industrial Construction, 2011, 41(11):76-80. (in Chinese)
[19] 曹霞, 常婧, 王艳俊. 高强钢筋RPC梁受弯构件正截面承载力试验研究[J]. 河南理工大学学报:自然科学版, 2015, 34(1):109-115. Cao Xia, Chang Jing, Wang Yanjun. Experimental study on flexural capacity of normal section of high strength reinforced reactive powder concrete beam[J]. Journal of Henan Polytechnic University:Natural Science, 2015, 34(1):109-115. (in Chinese)
[20] 李莉. 活性粉末混凝土梁受力性能及设计方法研究[D]. 哈尔滨:哈尔滨工业大学, 2010. Li Li. Mechanical behavior and design method for reactive powder concrete beams[D]. Harbin:Harbin Institute of Technology, 2010. (in Chinese)
[1] 王景全, 王震, 高玉峰, 诸钧政. 预制桥墩体系抗震性能研究进展:新材料、新理念、新应用[J]. 工程力学, 2019, 36(3): 1-23.
[2] 徐明雪, 梁兴文, 于婧, 李林. UHPC梁短期刚度理论与试验研究[J]. 工程力学, 2019, 36(1): 146-154,164.
[3] 张文华, 张云升, 陈振宇. 超高性能混凝土抗缩比钻地弹侵彻试验及数值仿真[J]. 工程力学, 2018, 35(7): 167-175,186.
[4] 刘君平, 徐帅, 陈宝春. 钢-UHPC组合梁与钢-普通混凝土组合梁抗弯性能对比试验研究[J]. 工程力学, 2018, 35(11): 92-98,145.
[5] 杨简, 陈宝春, 沈秀将, 林毅焌. UHPC单轴拉伸试验狗骨试件优化设计[J]. 工程力学, 2018, 35(10): 37-46,55.
[6] 李小军, 李晓虎. 核电工程双钢板混凝土组合剪力墙面内受弯性能研究[J]. 工程力学, 2017, 34(9): 43-53.
[7] 赖建中, 朱耀勇, 谭剑敏. 超高性能混凝土在埋置炸药下的抗爆试验及数值模拟[J]. 工程力学, 2016, 33(5): 193-199.
[8] 武晓敏, 谢剑, 徐福泉, 齐文. CFRP加固青白石梁受弯性能试验研究[J]. 工程力学, 2015, 32(增刊): 215-220.
[9] 顾冬生, 吴刚, 吴智深. RC圆柱受弯承载力极限值计算方法研究[J]. 工程力学, 2012, 29(8): 227-235.
[10] 张文芳, 马军卫, 常建兰. 恒压受弯无筋砌体承重墙的受弯能力历经过程特征研究[J]. 工程力学, 2012, 29(6): 202-210.
[11] 黄 靓 徐紫鹏 鲁懿虬. 弯剪共同作用下钢筋混凝土梁承载力计算方法的研究[J]. 工程力学, 2012, 29(12): 302-306.
[12] 郑建岚;罗素蓉;王雪芳. 高性能混凝土抗裂性能研究[J]. 工程力学, 2008, 25(增刊Ⅱ): 71-098.
[13] 何 政;李 光. 基于可靠度的FRP筋材料分项系数的确定[J]. 工程力学, 2008, 25(9): 0-223.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 唐雪松;张建仁;李传习;徐飞鸿;潘军. 基于损伤理论的钢筋混凝土拱结构破坏过程的数值模拟[J]. 工程力学, 2006, 23(2): 115 -125 .
[2] 隋允康;彭细荣;叶红玲. 应力约束全局化处理的连续体结构ICM拓扑优化方法[J]. 工程力学, 2006, 23(7): 1 -7 .
[3] 任宜春;易伟建. 钢筋混凝土梁的非线性振动识别研究[J]. 工程力学, 2006, 23(8): 90 -95 .
[4] 王庆利;王金鱼;张永丹. CFRP-钢管砼轴压短柱受力性能分析[J]. 工程力学, 2006, 23(8): 102 -105, .
[5] 侯艳丽;周元德;张楚汉. 用3D离散元实现Ⅰ/Ⅱ型拉剪混合断裂的模拟[J]. 工程力学, 2007, 24(3): 0 -007 .
[6] 吕 敬;李俊峰;王天舒. 平动矩形贮箱刚-液耦合非线性动力学研究[J]. 工程力学, 2007, 24(2): 0 -008 .
[7] 赵宝虎;王燕群;岳 澄;亢一澜;王 辉. 盾构始发过程反力架应力监测与安全评价[J]. 工程力学, 2009, 26(9): 105 -111 .
[8] 潘 继;蔡国平. 桁架结构作动器优化配置的粒子群算法[J]. 工程力学, 2009, 26(12): 35 -039 .
[9] 劳裕华;白力更;邵永健;朱聘儒. 火灾下压型钢板组合板的内力分析[J]. 工程力学, 2010, 27(03): 107 -111 .
[10] 熊志远;王正道;李豫彰;李郑发;畅若妮. 单向EMC层合板折叠变形时面内/面外屈曲形式的判据[J]. 工程力学, 2010, 27(6): 183 -188 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日