工程力学 ›› 2019, Vol. 36 ›› Issue (5): 53-66,75.doi: 10.6052/j.issn.1000-4750.2018.03.0160

• 土木工程学科 • 上一篇    下一篇

隧道锚固系统的协同作用及设计方法

孙振宇, 张顶立, 房倩   

  1. 北京交通大学城市地下工程教育部重点实验室, 北京 100044
  • 收稿日期:2018-03-20 修回日期:2018-10-23 出版日期:2019-05-25 发布日期:2019-03-28
  • 通讯作者: 张顶立(1963-),男,江苏徐州人,教授,博士,博导,从事隧道及地下工程研究(E-mail:zhang-dingli@263.net). E-mail:zhang-dingli@263.net
  • 作者简介:孙振宇(1993-),男,湖北天门人,博士生,主要从事隧道及地下工程方面的研究(E-mail:15115278@bjtu.edu.cn);房倩(1983-),男,山东淄博人,副教授,博士,博导,主要从事隧道结构设计方面的研究(E-mail:qfang@bjtu.edu.cn).
  • 基金资助:
    中央高校基本科研业务费专项资金项目(2018YJS125);国家重点研发计划项目(2017YFC0805401);国家自然科学基金项目(51738002)

THE SYNERGISTIC EFFECT AND DESIGN METHOD OF TUNNEL ANCHORAGE SYSTEM

SUN Zhen-yu, ZHANG Ding-li, FANG Qian   

  1. Key Laboratory for Urban Underground Engineering of Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
  • Received:2018-03-20 Revised:2018-10-23 Online:2019-05-25 Published:2019-03-28

摘要: 基于隧道围岩的复合结构特性,阐明了隧道锚固系统协同作用原理,建立了锚固体系协同作用力学模型,得到了锚固体系与围岩相互作用的全过程解答。隧道围岩由内部稳定性较差的浅层围岩和外侧承载能力较强的深层围岩复合而成,锚杆通过"组合梁"或"压缩拱"效应形成"围岩整体结构",锚索则将此结构悬吊至外侧稳定的深层围岩,其协同作用核心为调动深层围岩承载;基于锚杆参数敏感性分析,指出增大锚杆长度、预应力以及布置密度可显著减小围岩变形,而锚杆直径对围岩变形影响较小,计算表明锚杆长度以穿过浅层围岩伸入深层围岩第1组结构层为宜,合理的锚杆参数取值具有明显的匹配效应;锚固体系协同作用本质为变形协调和荷载的合理分配,锚杆、锚索支护参数相互匹配时能充分发挥组合构件效能,提高围岩稳定性;将围岩变形量和支护协同度作为评价指标,建立了锚固体系协同效果评价体系,并提出了基于锚固系统协同作用的隧道锚固参数确定方法,通过具体算例验证了该文的合理性和可靠性。该文研究成果对隧道锚固系统的协同作用给出了全面认识,可为隧道和地下工程中锚固体系的定量设计提供理论依据。

关键词: 隧道工程, 复合围岩结构, 锚固体系, 协同作用, 设计方法, 理论分析

Abstract: Based on the compound structural characteristics of tunnel surrounding rock, the principle of anchoring system synergistic effect is illuminated, and a corresponding mechanical model is established. The whole process of the interaction between an anchoring system and surrounding rock is solved. Tunnel surrounding rock is a composite of the internal instable surrounding rock and the external surrounding rock with strong load-bearing capacity. Rockbolt forms ‘a surrounding rock massive structure’ through a ‘composite beam’ or ‘compression arch’ effect. This structure is suspended to external stable surrounding rock by an anchor, and the core of synergy is to mobilize external surrounding rock bearing. The sensitivity analysis of bolt parameter indicates that increasing the length, prestress and density of a rockbolt can significantly reduce the deformation of surrounding rock, while its diameter has little effect on surrounding rock deformation. Calculations show that:appropriate length lies in passing through the internal surrounding rock and stretching into the first structure layer of external surrounding rock, and the reasonable values of bolt parameters have an obvious matching effect. The synergistic effect essence of an anchoring system is its deformation coordination and load rational distribution. The parameters of rockbolt and cable matching each other can give a full play to the assembly efficiency and improve the stability of surrounding rock. Taking the surrounding rock deformation and support synergy degree as evaluation indices, the synergistic effect evaluation system of a tunnel anchorage system is put forward, then the determination method of tunnel anchorage parameters is proposed based on anchoring system synergy. The research results give a comprehensive understanding of synergistic effect of a tunnel anchorage system, which can provide a theoretical basis for the quantitative design of the anchoring system in tunnel and underground engineering.

Key words: tunnelling engineering, compound structure of surrounding rock, anchorage system, synergistic effect, design method, theoretical analysis

中图分类号: 

  • U45
[1] 康红普, 王金华, 林健. 煤矿巷道支护技术的研究与应用[J]. 煤炭学报, 2010, 35(11):1809-1814. Kang Hongpu, Wang Jinhua, Lin Jian. Study and application of roadway support techniques for coal mines[J]. Journal of China Coal Society, 2010, 35(11):1809-1814. (in Chinese)
[2] Stille H, Holmberg M, Nord G. Support of weak rock with grouted bolts and shotcrete[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1989, 26(1):99-113.
[3] Fahimifar A, Soroush H. A theoretical approach for analysis of the interaction between grouted rockbolts and rock masses[J]. Tunnelling and Underground Space Technology, 2005, 20(4):333-343.
[4] 李大伟, 侯朝炯. 围岩应变软化巷道锚杆支护作用的计算[J]. 采矿与安全工程学报, 2008, 25(1):123-126. Li Dawei, Hou Chaojiong. Calculation of bolt support in surrounding rock strain softening roadway[J]. Journal of Mining & Safety Engineering, 2008, 25(1):123-126. (in Chinese)
[5] 余伟健, 高谦, 朱川曲. 深部软弱围岩叠加拱承载体强度理论及应用研究[J]. 岩石力学与工程学报, 2010, 29(10):2135-2142. Yu Weijian, Gao Qian, Zhu Chuanqu. Study of strength theory and application of overlap arch bearing body for deep soft surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(10):2135-2142. (in Chinese)
[6] Fengyun Wang, Deling Qian. Difference solution for a circular tunnel excavated in strain-softening rock mass considering decayed confinement[J]. Tunnelling and Underground Space Technology, 2018(82):66-81.
[7] Ghorbani A, Hasanzadehshooiili H. A novel solution for ground reaction curve of tunnels in elastoplastic strain softening rock masses[J]. Journal of Civil Engineering and Management, 2017, 23(6):773-786.
[8] 张顶立, 陈立平. 隧道围岩的复合结构特性及其荷载效应[J]. 岩石力学与工程学报, 2016, 35(3):456-469. Zhang Dingli, Chen Liping. Compound structural characteristics and load effect of tunnel surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(3):456-469. (in Chinese)
[9] 孙毅, 张顶立. 隧道复杂支护结构体系的协同作用原理[J]. 工程力学, 2016, 33(12):52-62. Sun Yi, Zhang Dingli. Synergy principle of complex supporting structural systems in tunnels[J]. Engineering Mechanics, 2016, 33(12):52-62. (in Chinese)
[10] 张顶立. 隧道围岩稳定性及其支护作用分析[J]. 北京交通大学学报, 2016, 40(4):9-18. Zhang Dingli. Analysis of surrounding rock stability and support action in tunnels[J]. Journal of Beijing Jiaotong University, 2016, 40(4):9-18. (in Chinese)
[11] Bobet A, Einstein H H. Tunnel Reinforcement with Rockbolts[J]. Tunnelling and Underground Space Technology, 2011, 26(1):100-123.
[12] 沈华章, 王水林, 刘泉声. 模拟应变软化岩石三轴试验过程曲线[J]. 岩土力学, 2014, 35(6):1647-1654. Shen Huazhang, Wang Shuilin, Liu Quansheng. Simulation of constitutive curves for strain-softening rock in triaxial compression[J]. Rock and Soil Mechanics, 2014, 35(6):1647-1654. (in Chinese)
[13] 孙振宇, 张顶立, 房倩, 等. 隧道初期支护与围岩相互作用的时空演化特性[J]. 岩石力学与工程学报, 2017, 36(增2):3943-3956. Sun Zhenyu, Zhang Dingli, Fang Qian, et al. Spatial and temporal evolution characteristics of interaction between primary support and tunnel surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(Suppl 2):3943-3956.
[14] 蔡美峰, 何满潮, 刘东燕. 岩石力学与工程[M]. 北京:科学出版社, 2002:327-328. Cai Meifeng, He Manchao, Liu Dongyan. Rock mechanics and engineering[M]. Beijing:Science Press, 2002:327-328. (in Chinese)
[15] 孙振宇, 张顶立, 房倩, 等. 基于超前加固的深埋隧道围岩力学特性研究[J]. 工程力学, 2018, 35(2):92-104. Sun Zhenyu, Zhang Dingli, Fang Qian, et al. Research on the mechanical property of the surrounding rock of deep-buried tunnel based on the advanced reinforcement[J]. Engineering Mechanics, 2018, 35(2):92-104. (in Chinese)
[16] Huang Z, Broch E, Lu M. Cavern roof stabilitymechanism of arching and stabilization by rockbolting[J]. Tunnelling and Underground Space Technology, 2002, 10(17):249-261.
[17] Fahimifar A, Ranjbarnia M. Analytical approach for the design of active grouted rockbolts in tunnel stability based on convergence-confinement method[J]. Tunnelling and Underground Space Technology, 2009, 24(4):363-375.
[18] Brown E T, Bray J W, Ladanyi B, et al. Ground response curves for rock tunnels[J]. Journal of Geotechnical Engineering, ASCE, 1983, 109(1):15-39.
[19] CECS22:2005, 岩土锚杆(索)技术规程[S]. 北京:计划出版社, 2005. CECS22:2005, The technical specifications for ground anchor[S]. Beijing:China Planning Press, 2005. (in Chinese)
[20] Wang S L, Yin S D, Wu Z J. Strain-softening analysis of a spherical cavity[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36:182-202.
[21] 左昌群, 丁少林, 刘代国, 等. 加锚云母片岩隧道围岩失效特征及力学效应[J]. 现代隧道技术, 2014, 51(4):39-45. Zuo Changqun, Ding Shaolin, Liu Daiguo, et al. Failure characteristics and the mechanical effect of mica schist in an anchored tunnel[J]. Modern Tunnelling Technology, 2014, 51(4):39-45. (in Chinese)
[22] 龙景奎, 蒋斌松, 刘刚, 等. 巷道围岩协同锚固系统及其作用机理研究与应用[J]. 煤炭学报, 2012, 37(3):372-378. Long Jingkui, Jiang Binsong, Liu Gang, et al. Study on the mechanism and application of synergistic anchoring systems in roadway surrounding rocks[J]. Journal of China Coal Society, 2012, 37(3):372-378. (in Chinese)
[23] 王琦, 李术才, 李为腾, 等. 让压型锚索箱梁支护系统组合构件耦合性能分析及应用[J]. 岩土力学, 2012, 33(11):3374-3384. Wang Qi, Li Shucai, Li Weiteng, et al. Analysis and application on combination components coupling of pressure relief anchor box beam support system[J]. Rock and Soil Mechanics, 2012, 33(11):3374-3384. (in Chinese)
[24] Hoek E. Tunnel support in weak rock[C]//Symposium of Sedimentary Rock Engineering, Taipei, 1998:1-12.
[25] TB 10003-2005, 铁路隧道设计规范[S]. 北京:中国铁道出版社, 2005. TB 10003-2005, Code for Design of Railway Tunnel[S]. Beijing:China Railway Publishing House, 2005. (in Chinese)
[26] Panet M. Analyse de la Stabilité d'un Tunnel Creusé dans un Massif Rocheux en Tenant Compte du Comportement aprés la Rupture[J]. Rock Mechanics, 1976, 4(8):209-223.
[1] 李宏男, 成虎, 王东升. 桥梁结构地震易损性研究进展述评[J]. 工程力学, 2018, 35(9): 1-16.
[2] 高佳明, 刘伯权, 黄华, 周长泉. 带板钢筋混凝土框架连续倒塌理论分析[J]. 工程力学, 2018, 35(7): 117-126.
[3] 徐志峰, 陈忠范, 朱松松, 刘吉, 殷之祺. 秸秆板轻钢高强泡沫混凝土剪力墙轴心受压性能研究[J]. 工程力学, 2018, 35(7): 219-231.
[4] 李天, 晁进涛, 樊嘉. 等腰三角形空间桁架自由扭转理论分析和试验研究[J]. 工程力学, 2018, 35(5): 223-230,238.
[5] 王玉银, 王庆贺, 耿悦. 建筑结构用再生混凝土水平受力构件研究进展[J]. 工程力学, 2018, 35(4): 1-15.
[6] 李珂, 葛耀君, 赵林, 夏锦林. 大跨度斜拉桥气弹模型对结构静风响应的反应能力的数值研究[J]. 工程力学, 2018, 35(3): 79-85.
[7] 张家广, 吴斌, 赵俊贤. 防屈曲支撑加固钢筋混凝土框架的实用设计方法[J]. 工程力学, 2018, 35(3): 151-158.
[8] 李寿英, 曾庆宇, 王世峰, 邹国栋, 陈政清. 阻尼器对悬索桥双吊索减振效果的理论研究[J]. 工程力学, 2018, 35(3): 186-192,226.
[9] 徐龙河, 肖水晶, 卢啸. 内置碟簧自复位联肢剪力墙参数设计与滞回性能研究[J]. 工程力学, 2018, 35(10): 144-151,161.
[10] 谢启芳, 杜彬, 钱春宇, 郑培君, 李双, 张风亮. 古建筑木结构燕尾榫节点弯矩-转角模型研究[J]. 工程力学, 2016, 33(8): 39-44.
[11] 韩鹏飞, 刘晶波, 陆新征, 林丽, 岑松. 飞机撞击荷载计算模型中压溃力选取分析[J]. 工程力学, 2016, 33(2): 81-87.
[12] 孙毅, 张顶立. 隧道复杂支护结构体系的协同作用原理[J]. 工程力学, 2016, 33(12): 52-62.
[13] 于润清, 方秦, 陈力, 颜海春. 建筑结构构件基于性能的抗爆设计方法[J]. 工程力学, 2016, 33(11): 75-83.
[14] 刘青, 李国强, 陆烨. 内嵌屈曲约束钢板剪力墙钢框架的性能参量及计算方法[J]. 工程力学, 2016, 33(10): 105-115,137.
[15] 谢楠, 付小辉, 王立峰, 胡杭, 武桐. 扣件式高大模板支架的概率极限状态设计法研究[J]. 工程力学, 2016, 33(10): 68-75,104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡小荣;俞茂宏. 材料三剪屈服准则研究[J]. 工程力学, 2006, 23(4): 6 -11 .
[2] 隋允康;彭细荣;叶红玲. 应力约束全局化处理的连续体结构ICM拓扑优化方法[J]. 工程力学, 2006, 23(7): 1 -7 .
[3] 王国杰;郑建岚. 混凝土结构早龄期应力相关应变现场监测与分析[J]. 工程力学, 2009, 26(9): 61 -066, .
[4] 许兆棠. 传动比对直升机尾传动系统扭转振动影响的分析[J]. 工程力学, 2009, 26(12): 249 -256 .
[5] 肖映雄;周志阳;舒 适. 几类典型网格下三维弹性问题的代数多层网格法[J]. 工程力学, 2011, 28(6): 11 -018 .
[6] 陈学伟;韩小雷;孙思为. 三种非线性梁柱单元的研究及单元开发[J]. 工程力学, 2011, 28(增刊I): 5 -011 .
[7] 胡亚元. 内时模型“现时近似式”与塑性增量理论的关系研究[J]. 工程力学, 2009, 26(6): 31 -035 .
[8] 沈蒲生. 依次放松约束结点的子结构法[J]. 工程力学, 1984, 1(1): 81 -92 .
[9] 文新. 关于高强混凝土研究和应用现状[J]. 工程力学, 1985, 2(4): 11 .
[10] 陈兴冲;郑越. 弹塑性Winkler地基上双柱式桥墩的地震反应[J]. 工程力学, 2005, 22(3): 112 -117, .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日