工程力学 ›› 2019, Vol. 36 ›› Issue (7): 109-115,125.doi: 10.6052/j.issn.1000-4750.2018.03.0148

• 土木工程学科 • 上一篇    下一篇

基于多元EMD-AM/FM分解的多点非平稳雷暴风速模拟

宋淳宸1, 苏延文2, 黄国庆1, 刘瑞莉1, 杨成1   

  1. 1. 西南交通大学土木工程学院, 四川, 成都 610031;
    2. 中铁二院工程集团有限责任公司, 四川, 成都 610031
  • 收稿日期:2018-03-16 修回日期:2019-04-10 出版日期:2019-07-06 发布日期:2019-07-06
  • 通讯作者: 黄国庆(1976-),男,江苏人,教授,博士,博导,从事风工程及随机振动研究(E-mail:ghuang1001@gmail.com). E-mail:ghuang1001@gmail.com
  • 作者简介:宋淳宸(1993-),女,四川人,硕士生,从事结构风工程研究(E-mail:17711093696@163.com);苏延文(1985-),男,甘肃人,工程师,博士,从事风工程及随机振动研究(E-mail:syw1985@126.com);刘瑞莉(1994-),女,河南人,硕士生,从事风工程研究(E-mail:Liuruili0916@163.com);杨成(1977-),男,四川人,副教授,博士,从事防灾减灾工程研究(E-mail:yangcheng@home.swjtu.edu.cn).
  • 基金资助:
    四川省青年基金项目(2016JQ0005);国家自然科学基金面上项目(51578471);四川省科技计划项目(2018GZ0052)

Simulation of multivariate non-stationary thunderstorm based on MEMD-AM/FM decomposition

SONG Chun-chen1, SU Yan-wen2, HUANG Guo-qing1, LIU Rui-li1, YANG Cheng1   

  1. 1. School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China;
    2. China Railway Eryuan Engineering Group Co. Ltd, Chengdu, Sichuan 610031, China
  • Received:2018-03-16 Revised:2019-04-10 Online:2019-07-06 Published:2019-07-06

摘要: 雷暴风对建筑物和输电线塔等结构具有很大的破坏性。为了准确估算结构的动力响应,获得可靠的风速样本至关重要。该文结合多元经验模态分解(MEMD),调频函数/调幅函数(AM/FM)分解和本征正交分解(POD)建立了基于时频分析的非平稳多点风速的模拟方法。第一,采用MEMD分解多点风速,产生固有模态函数;第二,采用AM/FM分解计算各点的固有模态函数的瞬时频率和瞬时幅值;第三,利用POD对瞬时频率解耦;第四,将瞬时幅值和解耦后的瞬时频率用于重构多点非平稳风速。实测多点雷暴风的模拟结果表明: MEMD-AM/FM分解-POD方法能满意地模拟多点非平稳雷暴风速。

关键词: MEMD, AM/FM分解, POD, 时频分析, 多点非平稳模拟

Abstract: Extreme wind like thunderstorm has a destructive effect on structures adopted by buildings and transmission towers. In order to analyze the dynamic response of a structure, it is essential to obtain reliable wind samples. Thusly, a time-frequency analysis-based method, composed of multivariate empirical mode decomposition (MEMD), amplitude modulation/frequency modulation (AM/FM) decomposition and proper orthogonal decomposition (POD), is proposed to simulate multivariate non-stationary wind speed. Firstly, MEMD decomposes multivariate non-stationary wind speed into a set of intrinsic mode functions. Secondly, AM/FM decomposition calculates the instantaneous frequency and instantaneous amplitude of each intrinsic mode function. Thirdly, the instantaneous frequency is decoupled by POD. Finally, the instantaneous amplitude and decoupled instantaneous frequency is used to reconstruct multivariate non-stationary wind speed. The simulation results of measured thunderstorm wind datas shows that MEMD-AM/FM decomposition-POD serves as a powerful tool in the simulation of multivariate non-stationary thunderstorm wind speed.

Key words: MEMD, AM/FM decomposition, POD, time-frequency analysis, multivariate non-stationary simulation

中图分类号: 

  • P446
[1] 瞿伟廉, 梁政平, 王力争, 等. 下击暴流的特征及其对输电线塔风致倒塌的影响[J]. 地震工程与工程振动, 2010, 30(6):120-126. Qu Weilian, Liang Zhengping, Wang Lizheng, et al. Downburst's characteristics and its effect on wind-induced collapse of transmission tower[J]. Journal of Earthquake Engineering and Engineering Vibration, 2010, 30(6):120-126. (in Chinese)
[2] Huang G. Application of proper orthogonal decomposition in fast Fourier transform-assisted multivariate nonstationary process simulation[J]. Journal of Engineering Mechanics, 2015, 141(7):04015015.
[3] Peng L, Huang G, Chen X, et al. Simulation of multivariate nonstationary random processes:hybrid stochastic wave and proper orthogonal decomposition approach[J]. Journal of Engineering Mechanics, 2017, 143(9):04017064.
[4] Zhao N, Huang G. Fast simulation of multivariate nonstationary process and its application to extreme winds[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2017, 170:118-127.
[5] 苏延文, 黄国庆, 彭留留. 与反应谱相容的多点完全非平稳地震动随机过程的快速模拟[J]. 工程力学, 2015, 32(8):141-148. Su Yanwen, Huang Guoqing, Peng Liuliu. Simulation of stochastic processes of fully non-stationary and response-spectrum-compatible multivariate group motions[J]. Engineering Mechanics, 2015, 32(8):141-148. (in Chinese)
[6] Gao Y, Wu Y X, Li D Y, et al. An improved approximation for the spectral representation method in the simulation of spatially varying ground motions[J]. Probabilistic Engineering Mechanics, 2012, 29:7-15.
[7] Wen Y K, Gu P. Description and simulation of nonstationary processes based on Hilbert spectra[J]. Journal of Engineering Mechanics, 2004, 130(8):942-951.
[8] Wang L, Mccullough M, Kareem A. A data-driven approach for simulation of full-scale downburst wind speeds[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2013, 123:171-190.
[9] Rehman N, Mandic D P. Multivariate empirical mode decomposition[J]. Proceedings Mathematical Physical & Engineering Sciences, 2010, 466(2117):1291-1302.
[10] Huang N E, Wu Z, Long S R, et al. On instantaneous frequency[J]. Advances in Adaptive Data Analysis, 2009, 1(2):177-229.
[11] 吴俊, 张榆锋. 经验模态分解和小波分解滤波特性的比较研究[J]. 云南大学学报(自然科学版), 2012(297):285-290. Wu Jun, Zhang Yufeng. The differences analysis on filtering properties of empirical mode decomposition and wavelet decomposition[J]. Journal of Yunnan University (Natural and Science), 2012(297):285-290. (in Chinese)
[12] 杨成, 唐泽楠, 常志旺, 等. 基于经验模态分解的速度脉冲型地震动量化识别[J]. 工程力学, 2017, 34(4):211-217. Yang Cheng, Tang Zenan, Chang Zhiwang, et al. EMD-based quantitative categorization for velocity pulsed-link ground motions[J]. Engineering Mechanics, 2017, 34(4):211-217. (in Chinese)
[13] Wu Z, Huang N E. Ensemble empirical mode decomposition:a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1):0900004-1-0900004-41.
[14] Bedrosian E. A product theorem for Hilbert transform[J]. Proceedings of the IEEE, 1963, 51(5):868-869.
[15] Null A H, Bedorian E. On the quadrature approximation to the Hilbert transform of modulated signals[J]. Proceedings of the IEEE, 1966, 54(10):1458-1459.
[16] Ji X, Huang G, Zhang X, et al. Vulnerability analysis of steel roofing cladding:Influence of wind directionality[J]. Engineering Structures, 2018, 156:587-597.
[17] Arias A. A measure of earthquake intensity[C]. Hansen RI. Seismic Design for Nuclear Power Plants:MIT Press, 1970:438-483.
[18] Huang G, Su Y, Kareem A, et al. Time-frequency analysis of nonstationary process based on multivariate empirical mode decomposition[J]. Journal of Engineering Mechanics, 2016, 142(1):04015065.
[19] Nason G P, Silverman B W. The stationary wavelet transform and some statistical applications[J]. Science, 1995, 346(6212):918-919.
[1] 刘祖军, 杨詠昕, 葛耀君, 张伟. 箱梁颤振的数值模拟及气动能量分析[J]. 工程力学, 2015, 32(9): 58-67.
[2] 章李刚, 楼文娟. 大型空间桁架结构多目标等效静力风荷载[J]. 工程力学, 2013, 30(8): 148-154.
[3] 罗楠,廖海黎,李明水. 大跨屋盖时域多目标等效静力风荷载计算方法[J]. 工程力学, 2013, 30(4): 316-321.
[4] 吴巧云;朱宏平;. 地震波时变谱估计方法比较研究[J]. 工程力学, 2010, 27(增刊I): 15-019.
[5] 刘 铁;樊 剑;钟秀蓉. 地震波的自适应时频分析方法对比研究[J]. 工程力学, 2009, 26(增刊 I): 29-032.
[6] 潘 峰;孙炳楠;陈 勇. 基于双POD模型的空间相关三维随机风场数值模拟[J]. 工程力学, 2008, 25(3): 0-205.
[7] 冯若强;武岳;沈世钊. 鞍形索网屋盖结构风振响应分析的Ritz-POD法[J]. 工程力学, 2006, 23(12): 73-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日