工程力学 ›› 2019, Vol. 36 ›› Issue (9): 50-59.doi: 10.6052/j.issn.1000-4750.2018.03.0147

• 土木工程学科 • 上一篇    下一篇

超高韧性水泥基复合材料动态压缩力学性能的数值模拟研究

徐世烺, 陈超, 李庆华, 赵昕   

  1. 浙江大学高性能建筑结构与材料研究所, 浙江, 杭州 310058
  • 收稿日期:2018-03-12 修回日期:2019-06-28 出版日期:2019-09-25 发布日期:2019-07-12
  • 通讯作者: 李庆华(1981-),女,河北人,教授,博士,博导,从事新材料结构方面研究(E-mail:liqinghua@zju.edu.cn). E-mail:liqinghua@zju.edu.cn
  • 作者简介:徐世烺(1953-),男,湖北人,教授,博士,博导,从事混凝土断裂力学、新型材料与新型结构研究(E-mail:slxu@zju.edu.cn);陈超(1993-),男,浙江人,硕士生,从事新型材料数值模拟研究(E-mail:ChaoChen.Daniel@outlook.com);赵昕(1989-),女,浙江人,博士生,从事新型材料防护冲击方面研究(E-mail:11212049@zju.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51678522);国家自然科学基金优秀青年科学基金项目(51622811)

NUMERICAL SIMULATION ON DYNAMIC COMPRESSIVE BEHAVIOR OF ULTRA-HIGH TOUGHNESS CEMENTITIOUS-COMPOSITES

XU Shi-lang, CHEN Chao, LI Qing-hua, ZHAO Xin   

  1. Institute of Advanced Engineering Structures and Materials, Zhejiang University, Hangzhou, Zhejiang 310058, China
  • Received:2018-03-12 Revised:2019-06-28 Online:2019-09-25 Published:2019-07-12

摘要: 该文基于HJC本构模型,采用分离式霍普金森杆(SHPB)压杆系统,对掺有聚乙烯醇(PVA)纤维的超高韧性水泥基复合材料(PVA-UHTCC)的动态压缩力学性能进行了数值模拟研究。首先,通过系统分析确定了21项HJC本构参数,并验证了模拟的正确性。基于此,通过分析5组应变率下材料的动态压缩应力-应变曲线讨论了峰值应力动态增强因子DIF的应变率效应,并通过LS-DYNA软件探讨了破坏过程、破坏形态与应变率的关系。模拟结果表明:随着应变率的增加,PVA-UHTCC材料的动态压缩应力-应变曲线呈现由应变硬化主导向着损伤软化主导的转变趋势;此外,PVA-UHTCC峰值应力动态增强因子DIF具有明显的应变率效应,其值随着应变率增加而增加,且在不同应变率区间呈现不同敏感性;通过量化DIF这种分区敏感性,提出了适用于PVA-UHTCC材料的DIF与应变率对数lgε分段函数式;同时,通过对比钢纤维增强水泥基材料(SFRCC)和普通混凝土材料,发现PVA-UHTCC材料的DIF应变率敏感性较低。最后,通过LS-DYNA软件模拟试件裂缝扩展和压碎破坏过程,更好地理解了PVA-UHTCC材料动态压缩破坏行为。

关键词: PVA-UHTCC, 数值模拟, 动态压缩性能, HJC本构模型, SHPB系统, 应变率效应, 压缩破坏

Abstract: Investigates the dynamic compressive behavior of PVA fiber reinforced ultra-high toughness cementitious-composites (PVA-UHTCC) using Split Hopkinson Pressure Bar (SHPB) test based on HJC constitutive model. Firstly, 21 parameters of HJC model are determined and the numerical simulation is verified. Then dynamic compressive stress-strain curves under 5 different strain rates are obtained for analyzing the strain-rate effects on Dynamic Increase Factor (DIF). The failure modes of specimens under different strain rates are also researched. The results show that with the increase of strain rate, DIF increases and the strain-hardening dominated behavior will transform into a strain-softening dominated behavior. Besides, PVA-UHTCC shows an obvious different strain-rate sensitivity in the different range of strain rates. Thusly, a functional expression between DIF and lgε is proposed. Compared with Steel Fiber Reinforced Cementitious Composites (SFRCC) and normal concrete, PVA-UHTCC has a lower strain-rate sensitivity. Finally, the crack propagation mechanism and failure modes are observed at LS-DYNA software to furtherly understand the dynamic compressive behavior of PVA-UHTCC.

Key words: PVA-UHTCC, numerical simulation, dynamic compressive behavior, HJC constitutive model, SHPB set-up, strain-rate effect, compressive failure

中图分类号: 

  • TU528.572
[1] Li V C, Leung C Y. Theory of steady state and multiple cracking of random discontinuous fiber reinforced brittle matrix composites[J]. ASCE Journal of Engineering Mechanics, 1992, 188(11):2246-2264.
[2] 徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008, 41(6):45-60. Xu Shilang, Li Hedong. A review on the development of research and application of ultra high toughness cementitious composites[J]. China Civil Engineering Journal, 2008, 41(6):45-60. (in Chinese)
[3] 徐世烺, 蔡向荣. 超高韧性纤维增强水泥基复合材料基本力学性能[J]. 水利学报, 2009, 40(9):1055-1063. Xu Shilang, Cai Xiangrong. Basic mechanical performance of ultra high toughness cementitious composites[J]. Journal of Hydraulic Engineering, 2009, 40(9):1055-1063. (in Chinese)
[4] 李庆华, 徐世烺. 超高韧性水泥基复合材料基本性能和结构应用研究进展[J]. 工程力学, 2009, 26(增刊2):23-67. Li Qinghua, Xu Shilang. Performance and application of ultra high toughness cementitious composite:a review[J]. Engineering Mechanics, 2009, 26(Suppl 2):23-67. (in Chinese)
[5] 刘问. 超高韧性水泥基复合材料动态力学性能的试验研究[D]. 大连:大连理工大学, 2012:95-112. Liu Wen. Experimental study on dynamic mechanical properties of ultra-high toughness cementitious composites[D]. Dalian:Dalian University of Technology, 2012:95-112. (in Chinese)
[6] 李庆华, 赵昕, 徐世烺. 纳米二氧化硅改性超高韧性水泥基复合材料冲击压缩试验研究[J]. 工程力学, 2017, 34(2):85-93. Li Qinghua, Zhao Xin, Xu Shilang. Impact compression properties of nano-SiO2 modified ultra high toughness cementitious composites using a split Hopkinson pressure bar[J]. Engineering Mechanics, 2017, 34(2):85-93. (in Chinese)
[7] 蔡向荣, 徐世烺. UHTCC薄板弯曲荷载-变形硬化曲线与单轴拉伸应力-应变硬化曲线对应关系研究[J]. 工程力学, 2010, 27(1):8-16. Cai Xiangrong, Xu Shilang. Study on corresponding relationships between flexural load-deformation hardening curves and tensile stress-strain hardening curves of UHTCC[J]. Engineering Mechanics, 2010, 27(1):8-16. (in Chinese)
[8] 杜修力, 窦国钦, 李亮, 等. 纤维高强混凝土的动态力学性能试验研究[J]. 工程力学, 2011, 28(4):138-144. Du Xiuli, Dou Guoqin, Li Liang, et al. Experimental study on dynamic mechanical properties of fiber reinforced high strength concrete[J]. Engineering Mechanics, 2011, 28(4):138-144. (in Chinese)
[9] 焦楚杰, 李祯, 高乐. 混凝土SHPB试验的数值模拟[J]. 工程力学, 2010, 27(增刊2):196-200. Jiao Chujie, Li Zhen, Gao Le. Numerical simulation of SHPB test of concrete[J]. Engineering Mechanics, 2010, 27(Suppl 2):196-200. (in Chinese)
[10] 陈猛, 李艺, 卢哲安, 等. 混杂纤维混凝土动态压缩性能试验及数值模拟研究[J]. 混凝土, 2015(8):91-94. Chen Meng, Li Yi, Lu Zhean, et al. Study on dynamic compression properties and numerical simulation of hybrid fiber reinforced concrete[J]. Concrete, 2015(8):91-94. (in Chinese)
[11] 张文华, 张云升. 超高性能水泥基复合材料动态冲击性能及数值模拟[J]. 混凝土, 2015(10):60-63. Zhang Wenhua, Zhang Yunsheng. Dynamic impact properties and simulation of ultra-high performance of cementitious composites[J]. Concrete, 2015(10):60-63. (in Chinese)
[12] Lv T H, Chen X W, Chen G. The 3D meso-scale model and numerical tests of split Hopkinson pressure bar of concrete specimen[J]. Construction and Building Materials, 2018, 160:744-764.
[13] Holmquist T J, Johnson G R, Cook W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures[C]//Michael J M. Proceedings of the 14th International Symposium on Ballistics. Sundbyberg:National Defence Research Establishment, 1993.
[14] Polanco-Loria M, Hopperstad O S, Børvik T, et al. Numerical predictions of ballistic limits for concrete slabs using a modified version of the HJC concrete model[J]. International Journal of Impact Engineering, 2008, 35(5):290-303.
[15] Rong Zhidan, Sun Wei. Experimental and numerical investigation on the dynamic tensile behavior of ultra-high performance cement based composites[J]. Construction and Building Materials, 2012, 31:168-173.
[16] Kong Xiangzhen, Fang Qin, Wu Hao, et al. Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model[J]. International Journal of Impact Engineering, 2016, 95:61-71.
[17] 高翔. 纳米SiO2改性超高韧性水泥基复合材料试验研究[D]. 杭州:浙江大学, 2016:108-129. Gao Xiang. Experimental study on ultra-high toughness cementitious-composites with nano-SiO2[D]. Hangzhou:Zhejiang University, 2016:108-129. (in Chinese)
[18] 任根茂, 吴昊, 方秦, 等. 普通混凝土HJC本构模型参数确定[J]. 振动与冲击, 2016, 35(18):9-16. Ren Genmao, Wu Hao, Fang Qin, et al. Determinations of HJC constitutive model parameters for normal strength concrete[J]. Journal of Vibration and Shock, 2016, 35(18):9-16. (in Chinese)
[19] 熊益波, 陈剑杰, 胡永乐, 等. 混凝土JohnsonHolmquist本构模型关键参数研究[J]. 工程力学, 2012, 29(1):121-127. Xiong Yibo, Chen Jianjie, Hu Yongle, et al. Study on the key parameters of the Johnson-Holmquist constitutive model for concrete[J]. Engineering Mechanics, 2012, 29(1):121-127. (in Chinese)
[20] 陈星明, 刘彤, 肖正学. 混凝土HJC模型抗侵彻参数敏感性数值模拟研究[J]. 高压物理学报, 2012, 26(3):313-318. Chen Xingming, Liu Tong, Xiao Zhengxue. Numerical simulation research on HJC constitutive model sensitivity of penetration resistance of concrete[J]. Chinese Journal of High Pressure Physics, 2012, 26(3):313-318. (in Chinese)
[21] 巫绪涛, 李耀, 李和平. 混凝土HJC本构模型参数的研究[J]. 应用力学学报, 2010, 27(2):340-344. Wu Xutao, Li Yao, Li Heping. Investigation on HJC constitutive model of concrete[J]. Chinese Journal of Applied Mechanics, 2010, 27(2):340-344. (in Chinese)
[22] 吴赛, 赵均海, 王娟, 等. 基于砼SHPB试验数值分析的HJC模型参数研究[J]. 计算力学学报, 2015, 32(6):789-795. Wu Sai, Zhao Junhai, Wang Juan, et al. Numerical analysis on HJC parameters of concrete using SHPB test[J]. Chinese Journal of Computational Mechanics, 2015, 32(6):789-795. (in Chinese)
[23] 李艳, 王伟伟, 温从格. ECC常规三轴受压力学性能试验研究[J]. 混凝土, 2016(1):59-63. Li Yan, Wang Weiwei, Wen Congge. Experiment study on mechanical performance of ECC under conventional triaxial compression[J]. Concrete, 2016(1):59-63. (in Chinese)
[24] Wu Zemei, Shi Caijun, He Wen, et al. Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements[J]. Cement and Concrete Composites, 2017, 79:148-157.
[25] 曹吉星. 钢纤维混凝土的动态本构模型及其有限元方法[D]. 成都:西南交通大学, 2011:49-53.Cao Jixing. Dynamic constitutive model of steel fiber reinforced concrete and its finite element method[D]. Chengdu:Southwest Jiaotong University, 2011:49-53. (in Chinese)
[26] 崔昭. 钢-PVA混杂纤维混凝土动态本构模型及其有限元分析[D]. 广州:华南理工大学, 2016:38-42. Cui Zhao. Dynamic constitutive model and finite element analysis of steel-PVA hybrid fiber concrete[D]. Guangzhou:South China University of Technology, 2016:38-42. (in Chinese)
[27] Li Qinghua, Zhao Xin, Xu Shilang, et al. Influence of steel fiber on dynamic compressive behavior of hybrid fiber ultra high toughness cementitious composites at different strain rates[J]. Construction and Building Materials, 2016, 125:490-500.
[28] Wang Shasha, Le H T N, Poh L H, et al. Effect of high strain rate on compressive behavior of strain-hardening cement composite in comparison to that of ordinary fiber-reinforced concrete[J]. Construction and Building Materials, 2017, 136:31-43.
[29] 万世强. 钢-PVA混杂纤维增强水泥基复合材料冲击特性研究[D]. 哈尔滨:哈尔滨工业大学, 2016:72-73. Wan Shiqiang. The impact performance experimental study of steel and PVA hybrid fiber reinforced cementitious composites[D]. Harbin:Harbin Institute of Technology, 2016:72-73. (in Chinese)
[30] 丁彦江. 钢-PVA混杂纤维增强水泥基复合材料冲击压缩动力性能试验研究[D]. 广州:华南理工大学, 2014:40-44. Ding Yanjiang. The shock compression dynamic performance experimental study of Steel and PVA hybrid fiber reinforced cement matrix composites[D]. Guangzhou:South China University of Technology, 2014:40-44. (in Chinese)
[31] Su Haoyang, Xu Jinyu. Dynamic compressive behavior of ceramic fiber reinforced concrete under impact load[J]. Construction and Building Materials, 2013, 45:306-313.
[32] Rong Zhidan, Sun Wei, Zhang Yunsheng. Dynamic compression behavior of ultra-high performance cement based composites[J]. International Journal of Impact Engineering, 2010, 31:515-520.
[1] 焦驰宇, 马银强, 刘陆宇, 龙佩恒, 侯苏伟. FPS支座双向加载拟静力试验与数值模拟研究[J]. 工程力学, 2019, 36(S1): 86-91.
[2] 陈恒, 肖映雄, 郭瑞奇. 基于p型自适应有限元法的混凝土骨料模型数值模拟[J]. 工程力学, 2019, 36(S1): 158-164.
[3] 程麦理. 黄土场地桩基横向力学行为数值模拟[J]. 工程力学, 2019, 36(S1): 229-233.
[4] 王钰, 纪巧玲, 刘庆凯. 规则波作用下导桩锚泊的浮防波堤水动力特性的数值模拟[J]. 工程力学, 2019, 36(S1): 268-271,284.
[5] 宋二祥, 仝睿, 罗爽, 李鹏. 路基土体“时变覆盖效应”的数值模拟分析[J]. 工程力学, 2019, 36(8): 30-39.
[6] 金浏, 郝慧敏, 张仁波, 杜修力. 高温下混凝土动态压缩行为细观数值研究[J]. 工程力学, 2019, 36(6): 70-78,118.
[7] 曾磊, 谢炜, 郑山锁, 陈熠光, 任雯婷. T形配钢型钢混凝土柱-钢梁框架抗震性能研究[J]. 工程力学, 2019, 36(5): 157-165.
[8] 种迅, 张蓝方, 万金亮, 王德才, 叶献国, 解琳琳, 邵徽斌. 两层带开洞预制剪力墙抗震性能试验研究与数值模拟分析[J]. 工程力学, 2019, 36(5): 176-183.
[9] 陈云, 蒋欢军, 刘涛, 万志威, 鲁正. 分级屈服型金属阻尼器抗震性能研究[J]. 工程力学, 2019, 36(3): 53-62.
[10] 钟紫蓝, 王书锐, 杜修力, 李立云, 侯本伟. 管道承插式接口轴向力学性能试验研究与数值模拟[J]. 工程力学, 2019, 36(3): 224-230,239.
[11] 高良田, 王键伟, 王庆, 贾宾, 王永魁, 石莉. 破冰船在层冰中运动的数值模拟方法[J]. 工程力学, 2019, 36(1): 227-237.
[12] 李天娥, 孙晓颖, 武岳, 王长国. 平流层飞艇气动阻力的参数分析[J]. 工程力学, 2019, 36(1): 248-256.
[13] 唐琼, 李易, 陆新征, 闫维明. 多螺箍筋柱轴压承载力研究[J]. 工程力学, 2018, 35(S1): 166-171.
[14] 祝明桥, 张紫薇, 蒋俏, 石卫华. 双层交通混凝土箱梁传力路径试验研究与分析[J]. 工程力学, 2018, 35(S1): 181-187.
[15] 罗威, 肖云逸, 何栋尔, 章子华. 快速荷载下CFRP-高温后混凝土界面正拉粘结性能试验[J]. 工程力学, 2018, 35(S1): 307-312,324.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[2] 陈有亮;邵伟;周有成. 水饱和混凝土单轴压缩弹塑性损伤本构模型[J]. 工程力学, 2011, 28(11): 59 -063, .
[3] 吴方伯;黄海林;陈伟;周绪红;. 肋上开孔对预制预应力混凝土带肋薄板施工阶段挠度计算方法的影响研究[J]. 工程力学, 2011, 28(11): 64 -071 .
[4] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[5] 王坤;谢康和;李传勋;童磊. 特殊条件下考虑起始比降的双层地基一维固结解析解[J]. 工程力学, 2011, 28(11): 78 -082 .
[6] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[7] 吴明;彭建兵;徐平;孙苗苗;夏唐代. 考虑土拱效应的挡墙后土压力研究[J]. 工程力学, 2011, 28(11): 89 -095 .
[8] 陆本燕;刘伯权;邢国华;吴涛. 桥梁结构基于性能的抗震设防目标与性能指标研究[J]. 工程力学, 2011, 28(11): 96 -103, .
[9] 左志亮;蔡健;钟国坤;杨春;. 带约束拉杆T形截面钢管内核心混凝土的等效单轴本构关系[J]. 工程力学, 2011, 28(11): 104 -113 .
[10] 田力;高芳华. 地下隧道内爆炸冲击下地表多层建筑的动力响应研究[J]. 工程力学, 2011, 28(11): 114 -123 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日