工程力学 ›› 2019, Vol. 36 ›› Issue (8): 59-69,78.doi: 10.6052/j.issn.1000-4750.2018.03.0144

• 土木工程学科 • 上一篇    下一篇

低应变率下混凝土动态拉伸破坏尺寸效应细观模拟

金浏1, 余文轩1, 杜修力1, 张帅1, 李冬1,2   

  1. 1. 北京工业大学城市减灾与防灾防护教育部重点实验室, 北京 100124;
    2. 清华大学土木系, 北京 100084
  • 收稿日期:2018-03-13 修回日期:2018-08-06 出版日期:2019-08-25 发布日期:2019-08-10
  • 通讯作者: 杜修力(1962-),男,四川人,教授,博士,博导,主要从事地震工程领域研究(E-mail:duxiuli@bjut.edu.cn). E-mail:duxiuli@bjut.edu.cn
  • 作者简介:金浏(1985-),男,江苏人,教授,博士,博导,主要从事混凝土与混凝土结构领域研究工作(E-mail:kinglew2007@163.com);余文轩(1993-),男,浙江人,硕士,主要从事混凝土结构尺寸效应方面研究(E-mail:ywxmailbox@163.com);张帅(1992-),男,河南人,硕士,主要从事混凝土结构尺寸效应方面研究(E-mail:zhangshuai_bjut@163.com);李冬(1988-),男,北京人,助理研究员,博士,主要从事混凝土及混凝土结构领域研究(E-mail:winte_lee@126.com).
  • 基金资助:
    国家重点研发计划项目(2018YFC1504302,2016YFC0701100);国家自然科学基金项目(51822801,51421005)

MESO-SCALE SIMULATION OF SIZE EFFECT OF DYNAMIC TENSILE STRENGTH OF CONCRETE UNDER LOW STRAIN RATES

JIN Liu1, YU Wen-xuan1, DU Xiu-li1, ZHANG Shuai1, LI Dong1,2   

  1. 1. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China;
    2. Department of Civil Engineering, Tsinghua University, Beijing 100084, China
  • Received:2018-03-13 Revised:2018-08-06 Online:2019-08-25 Published:2019-08-10

摘要: 在混凝土静态破坏尺寸效应方面已取得了较完善的成果,而在动态破坏尺寸效应方面,包括其产生机制及对应的尺寸效应律的研究则非常匮乏。为探讨动态荷载作用下混凝土尺寸效应行为,从细观角度出发,结合混凝土细观结构特征,考虑动态加载下细观组分应变率效应的影响,建立了混凝土破坏行为研究的细观力学分析模型与方法。以双边缺口混凝土试件为例,对其在低应变率(10-5 s-1~1 s-1)下混凝土动态拉伸破坏行为及尺寸效应进行细观数值模拟,并分析了应变率效应对动态破坏尺寸效应的影响。最后,结合应变率效应对强度及尺寸效应的影响规律—“强度增强效应”与“尺寸效应削弱效应”,在静态破坏尺寸效应律的基础上,建立了混凝土拉伸强度的“静动态统一”尺寸效应理论公式,并验证了理论公式的准确性和合理性。

关键词: 混凝土, 动态拉伸, 临界应变率, 尺寸效应, 细观模拟, 尺寸效应律

Abstract: Great progresses have been made in static size effect of concretes, while few efforts have been conducted in dynamic size effect of concretes. Herein the study, in order to explore the size effect of concrete under dynamic loadings, considering concrete heterogeneities and the strain rate effect for the meso components, a meso-scale simulation method was built. Taking the double notched concrete specimens as examples, the dynamic tensile failure and the size effect of concrete under low strain rates from 10-5 s-1 to 1 s-1 were investigated using the meso-scale simulation method. The effect of strain rate on the size effect in tensile strength of concrete was also analyzed. Finally, based on the influencing mechanism of strain rate effect on dynamic strength and size effect, i.e. the enhancement of strength and weakening of size effect, a "static-dynamic unified size effect law" for dynamic tensile strength of concrete was established. The proposed size effect law was also calibrated by meso-scale simulation results.

Key words: concrete, dynamic tension, critical strain rate, size effect, meso-scale simulation, size effect law

中图分类号: 

  • TU528.1
[1] 杜修力, 金浏, 李冬. 混凝土与混凝土结构尺寸效应述评(Ⅰ):材料层次[J]. 土木工程学报, 2017(9):28-45. Du Xiuli, Jin Liu, Li Dong. A state-of-the-art review on the size effect of concretes and concrete structures (I):concrete materials[J]. China Civil Engineering Journal, 2017(9):28-45. (in Chinese)
[2] 杜修力, 金浏, 李冬. 混凝土与混凝土结构尺寸效应述评(Ⅱ):构件层次[J]. 土木工程学报, 2017, 50(11):24-44. Du Xiuli, Jin Liu, Li Dong. A state-of-the-art review on the size effect of concretes and concrete structures (Ⅱ):RC members[J]. China Civil Engineering Journal, 2017, 50(11):24-44. (in Chinese)
[3] Wang X H, Zhang S R, Wang C, et al. Experimental investigation of the size effect of layered roller compacted concrete (RCC) under high-strain-rate loading[J]. Construction & Building Materials, 2018, 165:45-57.
[4] Bažant Z P, Planas J. Fracture and size effect in concrete and other quasibrittle materials[M]. CRC Press, 1998:7-15.
[5] Weibull W. The phenomenon of rupture in solids[J]. Proceedings of Royal Sweden Institute of Engineering Research, 1939, 153:1-55.
[6] Carpinteri A, Ferro G. Size effects on tensile fracture properties:a unified explanation based on disorder and fractality of concrete microstructure[J]. Materials & Structures, 1994, 27(10):563-571.
[7] Li Q M, Meng H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[J]. International Journal of Solids & Structures, 2003, 40(2):343-360.
[8] Hao Y, Hao H, Jiang G P, et al. Experimental confirmation of some factors influencing dynamic concrete compressive strengths in high-speed impact tests[J]. Cement & Concrete Research, 2013, 52(10):63-70.
[9] Hao Y, Hao H, Li Z X. Influence of end friction confinement on impact tests of concrete material at high strain rate[J]. International Journal of Impact Engineering, 2013, 60(60):82-106.
[10] Hao Y, Hao H, Li Z X. Numerical analysis of lateral inertial confinement effects on impact test of concrete compressive material properties[J]. International Journal of Protective Structures, 2010, 1(1):145-168.
[11] Hao H, Hao Y, Li J, et al. Review of the current practices in blast-resistant analysis and design of concrete structures[J]. Advances in Structural Engineering, 2016, 19(8):1193-1223.
[12] Krauthammer T, Elfahal MM, Lim J, et al. Size effect for high strength concrete cylinders subjected to axial impact[J]. International Journal of Impact Engineering, 2003, 28(9):1001-1016.
[13] Filho E D S S, Barbosa M T G. Dynamic size effect in normal-and high-strength concrete cylinders[J]. ACI Materials Journal, 2005, 102(2):77-85.
[14] Elfahal M M, Krauthammer T, Ohno T, et al. Size effect for normal strength concrete cylinders subjected to axial impact[J]. International Journal of Impact Engineering, 2005, 31(4):461-481.
[15] Bindiganavile V, Banthia N. Size effects and the dynamic response of plain concrete[J]. Journal of Materials in Civil Engineering, 2006, 18(4):485-491.
[16] 胡伟华, 邹荣华, 彭刚, 等. 不同应变速率下混凝土吸能特性及尺寸效应的研究[J]. 长江科学院院报, 2015, 32(5):132-136. Hu Weihua, Zou Ronghua, Peng Gang, et al. Energy absorption characteristics and size effect of concrete under different strain rates[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(5):132-136. (in Chinese)
[17] Li M, Hao H, Shi Y, et al. Specimen shape and size effects on the concrete compressive strength under static and dynamic tests[J]. Construction & Building Materials, 2018, 161:84-93.
[18] Zhou X Q, Hao H. Modelling of compressive behaviour of concrete-like materials at high strain rate[J]. International Journal of Solids & Structures, 2008, 45(17):4648-4661.
[19] Snozzi L, Caballero A, Molinari J F. Influence of the meso-structure in dynamic fracture simulation of concrete under tensile loading[J]. Cement & Concrete Research, 2011, 41(11):1130-1142.
[20] Pedersen R R, Simone A. Mesoscopic modeling and simulation of the dynamic tensile behavior of concrete[J]. Cement & Concrete Research, 2013, 50(7):74-87.
[21] Du X, Jin L, Ma G. Numerical simulation of dynamic tensile-failure of concrete at meso-scale[J]. International Journal of Impact Engineering, 2014, 66(4):5-17.
[22] Jin L, Xu C, Han Y, et al. Effect of end friction on the dynamic compressive mechanical behavior of concrete under medium and low strain rates[J]. Shock and Vibration, 2016, 2016:1-20.
[23] 金浏, 杜修力. 加载速率对混凝土拉伸破坏行为影响的细观数值分析[J]. 工程力学, 2015, 32(8):42-49. Jin L, Du X. Meso-scale numerical analysis of the effect of loading rate on the tensile failure behavior of concrete[J]. Engineering Mechanics, 2015, 32(8):42-49. (in Chinese)
[24] 杜敏, 金浏, 李冬, 等. 骨料粒径对混凝土劈拉性能及尺寸效应影响的细观数值研究[J]. 工程力学, 2017, 34(9):54-63. Du M, Jin L, Li Dong, et al. Mesoscopic simulation study of the influence of aggregate size on mechanical properties and specimen size effect of concrete subjected to splitting tensile loading[J]. Engineering Mechanics, 2017, 34(9):54-63. (in Chinese)
[25] Man H K, Mier J G M V. Size effect on strength and fracture energy for numerical concrete with realistic aggregate shapes[J]. International Journal of Fracture, 2008, 154(1-2):61-72.
[26] Grassl P, Grégoire D, Solano L R, et al. Meso-scale modelling of the size effect on the fracture process zone of concrete[J]. International Journal of Solids & Structures, 2012, 49(13):1818-1827.
[27] Wang X, Yang Z, Jivkov A P. Monte Carlo simulations of mesoscale fracture of concrete with random aggregates and pores:a size effect study[J]. Construction & Building Materials, 2015, 80:262-272.
[28] Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8):892-900.
[29] Lubliner J, Oliver J, Oller S, et al. A plastic-damage model for concrete[J]. International Journal of Solids & Structures, 1989, 25(3):299-326.
[30] Dilger W H, Koch R, Kowalczyk R. Ductility of plain and confined concrete under different strain rates[J]. Journal of the American Concrete Institute, 1984, 81(1):73-81.
[31] Bischoff P H, Perry S H. Compressive behaviour of concrete at high strain rates[J]. Materials & Structures, 1991, 24(6):425-450.
[32] Cusatis G. Strain-rate effects on concrete behavior[J]. International Journal of Impact Engineering, 2011, 38(4):162-170.
[33] Comite Euro-International D B. CEB-FIP model code 1990[S]. Trowbridge, Wiltshire, UK:Redwood Books, 1993.
[34] Malvar L J, Ross C A. A review of strain rate effects for concrete in tension[J]. ACI Materials Journal, 1998, 95(6):735-739.
[35] Yan D, Lin G. Dynamic properties of concrete in direct tension[J]. Cement & Concrete Research, 2006, 36(7):1371-1378.
[1] 杨志坚, 韩嘉明, 雷岳强, 赵海龙, 胡嘉飞. 预应力混凝土管桩与承台连接节点抗震性能研究[J]. 工程力学, 2019, 36(S1): 248-254.
[2] 代鹏, 杨璐, 卫璇, 周宇航. 不锈钢管混凝土短柱轴压承载力试验研究[J]. 工程力学, 2019, 36(S1): 298-305.
[3] 隋䶮, 薛建阳, 董金爽, 张锡成, 谢启芳, 白福玉. 附设粘滞阻尼器的混凝土仿古建筑梁-柱节点恢复力模型试验研究[J]. 工程力学, 2019, 36(S1): 44-53.
[4] 杜春波, 王涛, 郄毅. 交替协调子结构混合试验方法研究[J]. 工程力学, 2019, 36(S1): 54-58.
[5] 林德慧, 陈以一. 部分填充钢-混凝土组合柱整体稳定分析[J]. 工程力学, 2019, 36(S1): 71-77,85.
[6] 刘兴喜, 徐荣桥. FRP加固混凝土梁粘结层剪应力分析[J]. 工程力学, 2019, 36(S1): 149-153.
[7] 关少钰, 白涌滔, 刘卫辉, 李银胜, 王伟. 基于统一强度理论的高强钢管混凝土柱压弯屈服准则[J]. 工程力学, 2019, 36(S1): 170-174,183.
[8] 徐金金, 杨树桐, 刘治宁. 碱激发矿粉海水海砂混凝土与CFRP筋粘结性能研究[J]. 工程力学, 2019, 36(S1): 175-183.
[9] 李聪, 陈宝春, 黄卿维. 超高性能混凝土圆环约束收缩试验研究[J]. 工程力学, 2019, 36(8): 49-58.
[10] 徐明雪, 梁兴文, 汪萍, 王照耀. 超高性能混凝土梁正截面受弯承载力理论研究[J]. 工程力学, 2019, 36(8): 70-78.
[11] 邢国华, 杨成雨, 常召群, 秦拥军, 张广泰. 锈蚀钢筋混凝土柱的修正压-剪-弯分析模型研究[J]. 工程力学, 2019, 36(8): 87-95.
[12] 王宇航, 王雨嫣, 胡少伟. 海洋结构CFRP环向约束钢管混凝土柱在压弯扭荷载下的力学性能研究[J]. 工程力学, 2019, 36(8): 96-105.
[13] 时旭东, 李亚强, 钱磊, 李俊林, 汪文强. 不同超低温温度区间冻融循环作用混凝土弹性模量软化性能试验研究[J]. 工程力学, 2019, 36(8): 106-113,140.
[14] 武海鹏, 曹万林, 董宏英. 基于“统一理论”的异形截面多腔钢管混凝土柱轴压承载力计算[J]. 工程力学, 2019, 36(8): 114-121.
[15] 王怀亮. 钢纤维高性能轻骨料混凝土多轴强度和变形特性研究[J]. 工程力学, 2019, 36(8): 122-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日