工程力学 ›› 2019, Vol. 36 ›› Issue (5): 226-234.doi: 10.6052/j.issn.1000-4750.2018.03.0143

• 土木工程学科 • 上一篇    下一篇

基于径向基函数的冷却塔风场重构

李维勃, 王国砚, 钱志浩, 王昊   

  1. 同济大学航空航天与力学学院, 上海 200092
  • 收稿日期:2018-03-13 修回日期:2018-10-23 出版日期:2019-05-25 发布日期:2019-04-04
  • 通讯作者: 王国砚(1958-),男,安徽人,教授,博士,博导,主要从事结构动力学及结构风工程研究(E-mail:gywang@tongji.edu.cn). E-mail:gywang@tongji.edu.cn
  • 作者简介:李维勃(1991-),男,河南人,硕士生,主要从事结构风工程研究(E-mail:xiaol2972@163.com);钱志浩(1992-),男,重庆人,博士生,主要从事流固耦合数值模拟的研究(E-mail:qianzhihao@tongji.edu.cn);王昊(1992-),男,湖北人,博士生,主要从事结构风工程研究(E-mail:1410530@tongji.edu.cn)..

WIND FIELD RECONSTRUCTION OF COOLING TOWERS BASED ON THE RADIAL BASIS FUNCTION

LI Wei-bo, WANG Guo-yan, QIAN Zhi-hao, WANG Hao   

  1. School of Aerospace-Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
  • Received:2018-03-13 Revised:2018-10-23 Online:2019-05-25 Published:2019-04-04

摘要: 采用径向基函数法根据风洞试验结果对冷却塔的塔筒外表面进行风场重构,比较了重构前后喉部高度处迎风点和背风点的时程风压系数的相对误差,得出当体型常数C=0.5 Cmax时(CmaxC值的最大取值),在整个采样时间内绝大多数时程风压系数的相对误差在5%以内;将若干子午线上和环线上的重构结果与刚性模型测压风洞试验结果进行对比,证明了重构前后风压系数分布一致;分析了径向基函数中3种不同的C值对重构风场的影响,得出在这3种C值重构的结果中,取C=0.5 Cmax时重构的效果最好;最后比较了两种不同点集密度重构风场的风场特性,得出加密前后风场特性不变的结果,为优化后续的结构瞬态动力响应分析提供了依据。该文研究表明,基于径向基函数法进行冷却塔风场重构是一种简单、有效的方法。

关键词: 冷却塔结构, 风场重构, 径向基函数, 风洞试验, 风荷载时程

Abstract: The radial basis function was adopted to reconstruct the wind field on the outer surface of a cooling tower from the result of a wind tunnel test. The relative errors of wind pressure coefficients of windward and leeward points at throat height before and after the reconstruction were compared at every sample point. The results show that most relative errors are less than 5% when the shape parameter C is equal to 0.5 Cmax, where Cmax is the maximum value of C. The reconstruction results at several meridian lines and latitude lines were compared with those obtained from the rigid-model wind pressure test. The results show that the distribution of wind pressure coefficients is consistent before and after the reconstruction. The effect of three different values of C in the radial basis function on the reconstructed wind field is analyzed. The results show that among the reconstruction results obtained from the three values of C, the reconstruction effect is the best when C is equal to 0.5 Cmax. The reconstructed wind fields with two densities of reconstruction points were built up and compared with each other. The results in which the characteristics of reconstructed wind field is unchanged are obtained. This provides the basis for optimizing the transient structural dynamic response analysis in future studies. The research of this paper shows that the wind field reconstruction method based on the radial basis function is effective and simple.

Key words: cooling tower structures, reconstruction of wind field, radial basis function, wind tunnel test, wind loading time history

中图分类号: 

  • TU312.1
[1] 张军锋, 葛耀君, 赵林. 双曲冷却塔结构特性新认识[J]. 工程力学, 2013, 30(6):67-76. Zhang Junfeng. Ge Yaojun, Zhao Lin. New perceptions on the structure behavior of hyperboloidal cooling towers[J]. Engineering Mechanics, 2013, 30(6):67-76. (in Chinese)
[2] Niemann H J, Kopper H D. Influence of adjacent buildings on wind effects on cooling towers[J]. Engineering Structures, 1998, 20(10):874-880.
[3] Armitt J. Wind loading on cooling towers[J]. Journal of the Structural Division, 1980, 106(3):623-641.
[4] Sun T F, Zhou L M. Wind pressure distribution around a ribless hyperbolic cooling tower[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1983, 14(1):181-192.
[5] Viladkar M N, Karisiddappa, Bhargava P, et al. Static soil-structure interaction response of hyperbolic cooling towers to symmetrical wind loads[J]. Engineering Structures, 2006, 28(9):1236-1251.
[6] Cheng X, Zhao L, Ge Y, et al. Wind effects on rough-walled and smooth-walled large cooling towers[J]. Advances in Structural Engineering, 2017.20(6):843-864.
[7] 田凯强, 秦其伟, 郑云飞, 等. 大型冷却塔表面风压分布特性的试验研究[J]. 工程力学, 2017, 34:269-272. Tian Kaiqiang, Qin Qiwei, Zheng Yunfei, et al. Experimental research on wind pressure distribution of cooling towers[J]. Engineering Mechanics, 2017, 34:269-272. (in Chinese)
[8] 李元齐, 沈祖炎. 本征正交分解法在曲面模型风场重构中的应用[J]. 同济大学学报(自然科学版), 2006, 34(1):22-26. Li Yuanqi, Shen Zuyan. Application of the proper orthogonal decomposition method to wind field reconstruction of models with curved surfaces[J]. Journal of Tongji University (Natural Science), 2006, 34(1):22-26. (in Chinese)
[9] Huang D, He S, He X, et al. Prediction of wind loads on high-rise building using a BP neural network combined with POD[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2017, 170:1-17.
[10] 陶天友, 王浩. 基于Hermite插值的简化风场模拟[J]. 工程力学, 2017, 34(3):182-188. Tao Tianyou, Wang Hao. Reduced simulation of the wind field based on Hermite interpolation[J]. Engineering Mechanics, 2017, 34(3):182-188. (in Chinese)
[11] Hardy R L. Multiquadric equations of topography and other irregular surfaces[J]. Journal of Geophysical Research, 1971, 76(8):1905-1915.
[12] Hardy R L. Theory and applications of the multiquadric-biharmonic method 20 years of discovery 1968-1988[J]. Computers & Mathematics with Applications, 1990, 19(8):163-208.
[13] Franke R. Scattered data interpolation:Tests of some method[J]. Mathematics of Computation, 1982, 157(157):181-200.
[14] Micchelli C A. Interpolation of scattered data:Distance matrices and conditionally positive definite functions[J]. Constructive Approximation, 1986, 2(1):11-22.
[15] Schaback R. A unified theory of radial basis functions:Native Hilbert spaces for radial basis functions Ⅱ[J]. Journal of Computational & Applied Mathematics, 2000, 121(1/2):165-177.
[16] Wang L, Wang Z, Qian Z. A meshfree method for inverse wave propagation using collocation and radial basis functions[J]. Computer Methods in Applied Mechanics & Engineering, 2017, 322(1):311-350.
[17] Wang L, Chu F, Zhong Z. Study of radial basis collocation method for wave propagation[J]. Engineering Analysis with Boundary Elements, 2013, 37(2):453-463.
[18] Hu H Y, Chen J S, Hu W. Weighted radial basis collocation method for boundary value problems[J]. International Journal for Numerical Methods in Engineering, 2010, 69(13):2736-2757.
[19] Madych W R. Miscellaneous error bounds for multiquadric and related interpolators[J]. Computers & Mathematics with Applications, 1992, 24(12):121-138.
[1] 胡伟成, 杨庆山, 张建. 湍流边界层中三维山丘地形风场大涡模拟[J]. 工程力学, 2019, 36(4): 72-79.
[2] 梁洪超, 楼文娟, 丁浩, 卞荣. 非线性振型结构HFFB试验模态力计算方法及不确定性分析[J]. 工程力学, 2019, 36(3): 71-78.
[3] 张景钰, 张明金, 李永乐, 房忱, 向活跃. 高速铁路路堤-路堑过渡段复杂风场和列车气动效应风洞试验研究[J]. 工程力学, 2019, 36(1): 80-87.
[4] 王浩, 柯世堂. 不同四塔组合形式对特大型冷却塔局部非高斯风压分布影响研究[J]. 工程力学, 2018, 35(8): 162-171.
[5] 李尚斌, 林永峰, 樊枫. 倾转旋翼气动特性风洞试验与数值模拟研究[J]. 工程力学, 2018, 35(6): 249-256.
[6] 赵林, 展艳艳, 陈旭, 葛耀君. 基于配筋率包络指标的冷却塔群塔风致干扰准则[J]. 工程力学, 2018, 35(5): 65-74.
[7] 李珂, 葛耀君, 赵林, 夏锦林. 大跨度斜拉桥气弹模型对结构静风响应的反应能力的数值研究[J]. 工程力学, 2018, 35(3): 79-85.
[8] 王骑, 李郁林, 李志国, 廖海黎. 不同风攻角下薄平板的颤振导数[J]. 工程力学, 2018, 35(10): 10-16.
[9] 胡伟成, 杨庆山, 张建. 多国规范山地风速地形修正系数对比研究[J]. 工程力学, 2018, 35(10): 203-211.
[10] 王晓江, 郑云飞, 刘庆宽, 刘小兵, 马文勇. 四心圆煤棚风荷载分布规律的试验研究[J]. 工程力学, 2017, 34(增刊): 59-62.
[11] 岳光强, 马文勇, 刘庆宽, 刘小兵. 风向角对方形断面细长结构气动力特性的影响[J]. 工程力学, 2017, 34(增刊): 5-10.
[12] 李少杰, 刘小兵, 杨群, 刘庆宽, 马文勇. 分离双扁平箱梁气动力干扰效应研究[J]. 工程力学, 2017, 34(增刊): 89-93.
[13] 郑云飞, 刘庆宽, 刘小兵, 马文勇. 端部状态对斜拉索节段模型气动特性的影响[J]. 工程力学, 2017, 34(增刊): 192-196.
[14] 卢照亮, 刘晓玲, 郑云飞, 刘庆宽, 马文勇, 刘小兵. 斜拉索表面粗糙度对干索驰振的影响[J]. 工程力学, 2017, 34(增刊): 174-178.
[15] 田凯强, 秦其伟, 郑云飞, 刘庆宽, 刘小兵, 马文勇. 大型冷却塔表面风压分布特性的试验研究[J]. 工程力学, 2017, 34(增刊): 269-272.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹晖;Michael I. Friswell. 基于模态柔度曲率的损伤检测方法[J]. 工程力学, 2006, 23(4): 33 -38 .
[2] 隋允康;彭细荣;叶红玲. 应力约束全局化处理的连续体结构ICM拓扑优化方法[J]. 工程力学, 2006, 23(7): 1 -7 .
[3] 施刚;石永久;王元清. 钢结构梁柱半刚性端板连接弯矩-转角全曲线计算方法[J]. 工程力学, 2006, 23(5): 67 -73,5 .
[4] 尹华伟;易伟建;魏红卫. 横向推力单桩的动力非线性分析[J]. 工程力学, 2006, 23(7): 99 -104 .
[5] 金 阳;童根树. 楔形工字梁腹板的弹性剪切屈曲分析[J]. 工程力学, 2009, 26(9): 1 -009 .
[6] 徐 静;李宏男;李 钢;黄连壮. 考虑桩-土-结构动力相互作用的输电塔地震反应分析[J]. 工程力学, 2009, 26(9): 24 -029 .
[7] 何 政;金建平;宋继广. 带载状态下CFRP约束混凝土圆柱膨胀比试验研究[J]. 工程力学, 2009, 26(9): 145 -151, .
[8] 梁兴文;李方圆;张 涛;邓明科. 新配筋方案小跨高比连梁抗震性能试验研究[J]. 工程力学, 2009, 26(12): 119 -126 .
[9] 陆新征;张炎圣;何水涛;卢 啸. 超高车辆撞击桥梁上部结构研究:损坏机理与撞击荷载[J]. 工程力学, 2009, 26(增刊Ⅱ): 115 -125 .
[10] 薛鹏飞;汪劲丰;项贻强. P.C.连续刚构桥施工过程的仿真分析[J]. 工程力学, 2010, 27(03): 101 -106 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日