工程力学 ›› 2019, Vol. 36 ›› Issue (4): 231-238.doi: 10.6052/j.issn.1000-4750.2018.03.0141

• 土木工程学科 • 上一篇    下一篇

预应力钢绞线高温力学性能试验研究

杜咏1,2, 孙亚凯1, 李国强2,3   

  1. 1. 南京工业大学土木工程学院, 江苏, 南京 211816;
    2. 土木工程防灾国家重点实验室, 上海 200092;
    3. 同济大学土木工程学院, 上海 200092
  • 收稿日期:2018-03-13 修回日期:2018-12-27 出版日期:2019-04-25 发布日期:2019-04-15
  • 通讯作者: 杜咏(1967-),女,重庆人,教授,博士,从事建筑结构抗火研究(E-mail:yongdu_mail@njtech.edu.cn). E-mail:yongdu_mail@njtech.edu.cn
  • 作者简介:孙亚凯(1991-),男,河南人,硕士生,从事钢结构抗火研究(E-mail:sunyakai001@163.com);李国强(1963-),男,湖南人,教授,博士,主要从事多高层建筑钢结构分析与设计理论、钢结构抗火计算与设计理论研究(E-mail:gqli@tongji.edu.cn).
  • 基金资助:
    国家自然科学基金面上项目(51878348);土木工程防灾国家重点实验室开放基金项目(SLDRCE14-05)

MECHANICAL PROPERTIES OF HIGH TENSILE STEEL CABLES AT ELEVATED TEMPERATURE

DU Yong1,2, SUN Ya-kai1, LI Guo-qiang2,3   

  1. 1. College of Civil Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China;
    2. State Key Laboratory for Disaster Reduction in Civil Engineering, Shanghai 200092, China;
    3. College of Civil Engineering, Tongji University, Shanghai 200092, China
  • Received:2018-03-13 Revised:2018-12-27 Online:2019-04-25 Published:2019-04-15

摘要: 该文采用非接触式应变视频测量系统,开展了冷拉1860级钢绞线高温力学性能试验研究。基于试验测试的钢绞线高温应力-应变全过程曲线,建议了预应力钢结构用钢绞线的比例极限、弹性模量、名义屈服强度、断裂强度的高温折减系数以及高温应力-应变函数关系。试验结果表明,高强冷拉钢绞线高温下应力-应变全过程具有显著的应力强化阶段和颈缩阶段,1.25%应变下的高温名义屈服强度适用于高强冷拉钢绞线,钢绞线在高温下的捻度松弛效应对其高温力学性能存在影响。该研究成果进一步完善了预应力张拉钢结构用冷拉高强钢绞线高温下基本力学性能指标体系。

关键词: 钢结构, 冷拉高强钢索, 高温力学性能指标, 应力-应变关系, 抗火安全

Abstract: This study is motivated by increasingly prevalent use of cable-tensioned spatial steel structures and suspension bridges. Fire is one of the extreme conditions that need to be taken into consideration in the design of such structures. Steady-state tests have been conducted on steel cables with tensile strength of 1860MPa, which consist of a group of 7-wire twisted strands, to study their full range of stress strain relationships at elevated temperature. The thermal elongation test of steel cables has also been conducted. A charge-coupled device camera (CCDC) system is used to capture the full range of the stress-strain relationship of high tensile strength steel cables till rapture at elevated temperature. The reduction factors of proportional limit, elastic modules, effective yield strength and rupture strength at different temperature were obtained from the steady state tests and compared with that proposed by EN 1992-1-2. The test data discovered that EN 1992-1-2 overestimated effective strain up to 2% and ignored the stress hardening phase for high tensile strength cables within the full temperature range. The effective yield strength with 1.25% strain and a full range of stress-stain model considering stress hardening phase, which has been ignored by EN 1992-1-2, are proposed by the present test data. Finally, several sets of reduction factors and thermal elongation coefficients as a function of temperature have been proposed by fitting test results. The present test data discovered that the reduction factors of pre-stressing strands proposed by EN 1992-1-2 for pre-stressing concrete is not suitable for steel cables which always employed by tensile steel structures. The reduction factors proposed by present paper are reasonable for steel cables. Furthermore, the comparison of reduction factors between steel cables and single wires, it discovered the effect of twist on the mechanic properties at elevated temperature.

Key words: steel structures, high tensile strength steel cable, mechanical properties at elevated temperature, stress-strain relationship, fire safety

中图分类号: 

  • TU511.3
[1] Masao S, Akira O. The role of string in hybrid string structure[J]. Engineering Structures, 1999, 21:756-769.
[2] EN 1992-1-1, Design of concrete structures. Part 1.1 General rules and rules for buildings[S]. CEN, 2004.
[3] BS 5896, Specification for high tensile steel wire and strand for the pre-stressing of concrete[S]. British Standard Institution, 2012.
[4] ASTM A416/A416M-02, Standard specification for steel strand, uncoated seven-wire for pre-stressed concrete. West Conshohocken, Pa, USA, 2015.
[5] ACI 216.1-14, Code Requirements for determining fire resistance of concrete and masonry construction assemblies[S]. American Concrete Institute, Farmington, MI, 2014.
[6] Marti-Vargas J R. Design for fire resistance of precast-prestressed concrete[J]. PCI Journal, 2013, 58(4):118-120.
[7] EN 1992-1-2, Design of concrete structures. Part 1.2 General rules-Structural fire design[S]. CEN, 2004.
[8] Abrams M S, Cruz C R, Behavior at high temperature of steel strand for pre-stressed concrete[J]. Portland Cement Association Research and Development Laboratories. 1961, 3:8-19.
[9] Harmathy T Z, Stanzak W W. Elevated temperature tensile and creep properties of some structural and pre-stressing steels. ASTM STP-464:Fire Test Performance, 1970:186-208.
[10] Holmes M, Anchor R D, Cook G M E, et al. Effects of elevated temperatures on the strength properties of reinforcing and pre-stressing steels[J]. Structural Engineer Journal part B:R&D Quarterly, 1982, 60:7-13.
[11] Shakya A M, Kodur V K R. Effect of temperature on the mechanical properties of low relaxation seven-wire pre-stressing strand[J]. Construction and Building Materials, 2016, 124:74-84.
[12] Xiong Mingxiang,Richard Liew J Y, Mechanical properties of heat-treated high tensile structural steel at elevated temperature[J]. Thin-walled Structures, 2016, 98:169-176.
[13] Chu T C, Ranson W F, Sutton M A. Applications of digital-image-correlation techniques to experimental mechanics[J]. Experimental Mechanics, 1985, 25:232-244.
[14] Lyons J, Liu J, Sutton M A. High-temperature deformation measurements using digital-image correlation[J]. Experimental Mechanics, 1996, 36:64-70.
[15] GB/T 4338-2006, 金属材料高温拉伸试验方法[S]. 北京:中国标准出版社, 2007. GB/T 4338-2006, Metallic materials-Tensile testing at elevated temperature[S]. Beijing:China Standard Press, 2007. (in Chinese)
[16] 周焕廷, 李国强. 高温下钢绞线材料力学性能的试验研究[J]. 四川大学学报, 2008, 40(5):106-110. Zhou Huanting, Li Guoqiang, Experimental studies on the properties of steel strand at elevated temperatures, Journal of Sichuan University, 2008, 40(5):106-110. (in Chinese)
[17] 张昊宇, 郑文忠. 1860级低松弛钢绞线高温下力学性能[J]. 哈尔滨工业大学学报, 2007, 39(6):861-865. Zhang Haoyu, Zheng Wenzhong, Mechanical property of steel strand at high temperature, Journal of Harbin Institute of Technology, China, 2007, 39(6):861-865. (in Chinese)
[18] 范进, 吕志涛. 受高温作用时预应力钢绞线性能的试验研究[J]. 建筑结构, 2002, 32(3):50-63. Fan Jin, Lü Zhitao. Experimental study on the pre-stressed steel strand at high temperature[J]. Building Structure Journal, China, 2002, 32(2):50-63. (in Chinese)
[19] Conor T. Mechanical properties of cold-drawn steel strand at elevated temperature[D]. Lehigh University. 2015.
[20] EN 1993-1-2, Design of steel structures. Part 1-2. General rules. Structural fire[S]. CEN, 2007.
[1] 张立红, 胡晓, 曾迪, 周德才, 毛宇, 吕玮. 基于抗震性能的高烈度区高端阀厅选型研究[J]. 工程力学, 2018, 35(S1): 320-324.
[2] 张爱林, 张勋, 刘学春, 王琦. 钢框架-装配式两边连接薄钢板剪力墙抗震性能试验研究[J]. 工程力学, 2018, 35(9): 54-63,72.
[3] 施刚, 王珣, 高阳, 张勇. 国产低屈服点钢材循环加载试验研究[J]. 工程力学, 2018, 35(8): 30-38.
[4] 尹飞, 周晖, 王元清, 廖小伟, 杨璐. A572 Gr.50厚板对接焊缝断裂性能研究[J]. 工程力学, 2018, 35(6): 42-51.
[5] 王元清, 顾浩洋, 廖小伟. 钢结构角焊缝抗剪疲劳性能的试验研究[J]. 工程力学, 2018, 35(4): 61-68.
[6] 雷素素, 刘宇飞, 段先军, 郭小华, 李学飞, 李建华, 侯进峰, 李海兵, 杨建平, 幸坤涛, 崔政涛, 关键, 毕登山, 聂鑫. 复杂大跨空间钢结构施工过程综合监测技术研究[J]. 工程力学, 2018, 35(12): 203-211.
[7] 徐善华, 张宗星, 李柔, 位龙虎. 锈蚀钢框架地震易损性评定方法[J]. 工程力学, 2018, 35(12): 107-115.
[8] 陈学森, 施刚, 赵俊林, 郁汉明, 魏东. 基于组件法的超大承载力端板连接节点弯矩-转角曲线计算方法[J]. 工程力学, 2017, 34(5): 30-41.
[9] 王元清, 廖小伟, 周晖, 石永久, 陈健陵, 叶国平. 基于SINTAP-FAD方法的含裂纹缺陷钢结构构件安全性评定研究[J]. 工程力学, 2017, 34(5): 42-51.
[10] 施正捷, 李全旺, 樊健生. 偏心钢结构节点梁柱-核心区受力机理研究[J]. 工程力学, 2017, 34(5): 68-77.
[11] 李运良, 李进, 景吉勇, 谭书舜, 周刚. 重塑黄土一维应变实验粒子速度测试波形的拉格朗日分析[J]. 工程力学, 2017, 34(3): 29-35.
[12] 张爱林, 孙超, 姜子钦. 联方型双撑杆索穹顶考虑自重的预应力计算方法[J]. 工程力学, 2017, 34(3): 211-218.
[13] 段进涛, 史旦达, 汪金辉, 焦宇, 何佩珊. 火灾环境下钢结构响应行为的FDS-ABAQUS热力耦合方法研究[J]. 工程力学, 2017, 34(2): 197-206.
[14] 郝际平, 孙晓岭, 薛强, 樊春雷. 绿色装配式钢结构建筑体系研究与应用[J]. 工程力学, 2017, 34(1): 1-13.
[15] 张宸赫, 廖红建, 钱春宇, 李杭州, 宋丽, 郑建国. 古建筑木材料拉-压疲劳试验研究[J]. 工程力学, 2016, 33(增刊): 201-206.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日