工程力学 ›› 2019, Vol. 36 ›› Issue (4): 72-79.doi: 10.6052/j.issn.1000-4750.2018.03.0138

• 土木工程学科 • 上一篇    下一篇

湍流边界层中三维山丘地形风场大涡模拟

胡伟成1,3, 杨庆山2,3, 张建1,3   

  1. 1. 北京交通大学土木工程系, 北京 100044;
    2. 重庆大学土木工程系, 重庆 400044;
    3. 结构风工程与城市风环境北京市重点实验室, 北京 100044
  • 收稿日期:2018-03-13 修回日期:2018-09-06 出版日期:2019-04-25 发布日期:2019-04-15
  • 通讯作者: 胡伟成(1992-),男,江西人,博士生,主要从事结构风工程研究(E-mail:13115277@bjtu.edu.cn). E-mail:13115277@bjtu.edu.cn
  • 作者简介:杨庆山(1968-),男,河北人,教授,博士,博导,主要从事结构抗震和抗风等研究(E-mail:qshyang@cqu.edu.cn);张建(1981-),男,辽宁人,讲师,博士,硕导,主要从事结构风工程和流固耦合等研究(E-mail:zhangjian@bjtu.edu.cn).
  • 基金资助:
    国家自然科学基金国际(地区)合作与交流项目(51720105005)

LES STUDY OF TURBULENT BOUNDARY LAYERS OVER THREE-DIMENSIONAL HILLS

HU Wei-cheng1,3, YANG Qing-shan2,3, ZHANG Jian1,3   

  1. 1. Department of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China;
    2. Department of Civil Engineering, Chongqing University, Chongqing 400044, China;
    3. Beijing's Key Laboratory of Structural Wind Engineering and Urban Wind Environment, Beijing 100044, China
  • Received:2018-03-13 Revised:2018-09-06 Online:2019-04-25 Published:2019-04-15

摘要: 利用谐波合成法生成粗网格的脉动风速时程,通过双线性插值得到入口节点时程数据,考虑时程互相关性对时程进行修正得到大涡模拟湍流入口。采用谱元法对两种不同坡度的三维山丘地形进行大涡数值模拟,将结果与风洞试验及有限体积法数值模拟进行对比。结果表明:大涡模拟能较准确地预测山丘地形的风场及湍流特性;与有限体积法相比,谱元法的计算效率更高,在复杂山地地形的风场预测上有较好的应用前景。

关键词: 谐波合成法, 湍流入口, 谱元法, 有限体积法, 三维山丘地形, 风洞试验

Abstract: The harmonic synthesis method was applied to generate fluctuating wind velocity for coarse grids. Turbulent inlet for large eddy simulation (LES) was calculated by bilinear interpolation and cross-correlation modification. The spectral element method (SEM) was introduced to simulate two kinds of three-dimensional hills by LES. The results were compared to the wind-tunnel tests and finite volume method (FVM) numerical simulation. It was found that LES can accurately predict the wind speed distribution and turbulence characteristics of hilly terrain. Compared to FVM, SEM is more efficient and its applications in the fields of wind fields prediction for complex terrain is promising.

Key words: Harmonic synthesis method, turbulent inlet, spectral element method, finite volume method, three-dimensional hills, wind-tunnel test

中图分类号: 

  • P425
[1] Jackson P S, Hunt J C R. Turbulent wind flow over a low hill[J]. Quarterly Journal of the Royal Meteorological Society, 1975, 101(430):929-955.
[2] Hunt J C R, Leibovich S, Richards K J. Turbulent shear flows over low hills[J]. Quarterly Journal of the Royal Meteorological Society, 1988, 114(484):1435-1470.
[3] Finnigan J J. Air Flow Over Complex Terrain[M]//Flow and Transport in the Natural Environment:Advances and Applications. Springer Berlin Heidelberg, 1988:183-229.
[4] Taylor P A, Lee R J. Simple guidelines for estimating wind speed variations due to small scale topographic features[J]. Climatol Bull, 1984.
[5] Ishihara T, Hibi K, Oikawa S. A wind tunnel study of turbulent flow over a three-dimensional steep hill[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1999, 83(1/2/3):95-107.
[6] Ishihara T, Fujino Y, Hibi K. A wind tunnel study of separated flow over a two-dimensional ridge and a circular hill[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2001, 89:573-576.
[7] Cao S, Tamura T. Experimental study on roughness effects on turbulent boundary layer flow over a two-dimensional steep hill[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2006, 94(1):1-19.
[8] Cao S, Tamura T. Effects of roughness blocks on atmospheric boundary layer flow over a two-dimensional low hill with/without sudden roughness change[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2007, 95(8):679-695.
[9] Ishihara T, Hibi K. Numerical study of turbulent wake flow behind a three-dimensional steep hill[J]. Wind & Structures An International Journal, 2002, 5(2/3/4):317-328.
[10] Liu Z, Ishihara T, He X, et al. LES study on the turbulent flow fields over complex terrain covered by vegetation canopy[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2016, 155:60-73.
[11] Cao S, Wang T, Ge Y, et al. Numerical study on turbulent boundary layers over two-dimensional hills-Effects of surface roughness and slope[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2012, 104-106:342-349.
[12] 遆子龙, 李永乐, 廖海黎. 地表粗糙度对山区峡谷地形桥址区风场影响研究[J]. 工程力学, 2017, 34(6):73-81. Ti Zilong, Li Yongle, Liao Haili. Effect of ground surface roughness on wind field over bridge site with a gorge in mountainous area[J]. Engineering Mechanics, 2017, 34(6):73-81. (in Chinese)
[13] Bilal M, Birkelund Y, Homola M, et al. Wind over complex terrain-Microscale modelling with two types of mesoscale winds at Nygårdsfjell[J]. Renewable Energy, 2016, 99:647-653.
[14] Keating A, Piomelli U, Balaras E, et al. A priori and a posteriori tests of inflow conditions for large-eddy simulation[J]. Physics of Fluids, 2004, 16(12):4696-4712.
[15] Overview of Turbulent Inflow Boundary Conditions for Large-Eddy Simulations[J]. AIAA Journal, 2017:1-18.
[16] Deodatis G. Simulation of ergodic multivariate stochastic processes[J]. Journal of Engineering Mechanics, 1996, 122(8):778-787.
[17] 丁泉顺, 陈艾荣, 项海帆. 大跨度桥梁空间脉动风场的计算机模拟[J]. 力学季刊, 2006(2):184-189. Ding Quanshun, Chen Airong, Xiang Haifan. Computer simulation of space fluctuation wind field of long-span bridge[J]. Chinese Quarterly of Mechanics, 2006(2):184-189. (in Chinese)
[18] 张来平, 贺立新, 刘伟, 等. 基于非结构/混合网格的高阶精度格式研究进展[J]. 力学进展, 2013, 43(2):202-236. Zhang Weiping, He Lixin, Liu Wei, et al. High order accuracy scheme research based on unstructure/hybrid grid[J]. Advances In Mechanics, 2013, 43(2):202-236. (in Chinese)
[19] Patera A T. A spectral element method for fluid dynamics:Laminar flow in a channel expansion[J]. Journal of Computational Physics, 1984, 54(3):468-488.
[20] Fischer P F, Lottes J W, Kerkemeier S G. Nek5000 Web Page[CP]. http://nek5000.mcs.anl.gov, 2008.
[21] Karniadakisa G E. High-order splitting methods for the incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 1991, 97(2):414-443.
[22] Karamanos G S, Sherwin S J. A high order splitting scheme for the Navier-Stokes equations with variable viscosity[J]. Applied Numerical Mathematics, 2000, 33(1):455-462.
[23] Smagorinsky J S. General circulation experiments with the primitive equations[J]. Monthly Weather Review, 1963, 91(3):99-164.
[24] Germano M, Piomelli U, Moin P, et al. A dynamic subgrid-scale eddy viscosity model[J]. Physics of Fluids, 1991, 3(7):1760-1965.
[25] Lilly D K. A proposed modification of the Germano subgrid-scale closure method[J]. Physics of Fluids A Fluid Dynamics, 1992, 4(4):633-633.
[26] Levin J G, Iskandarani M, Haidvogel D B. A spectral filtering procedure for Eddy-resolving simulations with a spectral element ocean model[J]. Journal of Computational Physics, 2015, 137(1):130-154.
[27] Kanchi H, Sengupta K, Mashayek F. Effect of turbulent inflow boundary condition in LES of flow over a backward-facing step using spectral element method[J]. International Journal of Heat & Mass Transfer, 2013, 62(1):782-793.
[1] 梁洪超, 楼文娟, 丁浩, 卞荣. 非线性振型结构HFFB试验模态力计算方法及不确定性分析[J]. 工程力学, 2019, 36(3): 71-78.
[2] 张景钰, 张明金, 李永乐, 房忱, 向活跃. 高速铁路路堤-路堑过渡段复杂风场和列车气动效应风洞试验研究[J]. 工程力学, 2019, 36(1): 80-87.
[3] 王浩, 柯世堂. 不同四塔组合形式对特大型冷却塔局部非高斯风压分布影响研究[J]. 工程力学, 2018, 35(8): 162-171.
[4] 郭影, 姜忻良, 曹东波, 白铁钧, 朱广轶, 冯春. 一种渗流吸水诱发岩体强度弱化的有限体积数值计算方法[J]. 工程力学, 2018, 35(7): 139-149.
[5] 李尚斌, 林永峰, 樊枫. 倾转旋翼气动特性风洞试验与数值模拟研究[J]. 工程力学, 2018, 35(6): 249-256.
[6] 赵林, 展艳艳, 陈旭, 葛耀君. 基于配筋率包络指标的冷却塔群塔风致干扰准则[J]. 工程力学, 2018, 35(5): 65-74.
[7] 李珂, 葛耀君, 赵林, 夏锦林. 大跨度斜拉桥气弹模型对结构静风响应的反应能力的数值研究[J]. 工程力学, 2018, 35(3): 79-85.
[8] 胡伟成, 杨庆山, 闫渤文, 张建. 基于谱元法的复杂地形风场大涡模拟[J]. 工程力学, 2018, 35(12): 7-14.
[9] 王骑, 李郁林, 李志国, 廖海黎. 不同风攻角下薄平板的颤振导数[J]. 工程力学, 2018, 35(10): 10-16.
[10] 胡伟成, 杨庆山, 张建. 多国规范山地风速地形修正系数对比研究[J]. 工程力学, 2018, 35(10): 203-211.
[11] 王晓江, 郑云飞, 刘庆宽, 刘小兵, 马文勇. 四心圆煤棚风荷载分布规律的试验研究[J]. 工程力学, 2017, 34(增刊): 59-62.
[12] 岳光强, 马文勇, 刘庆宽, 刘小兵. 风向角对方形断面细长结构气动力特性的影响[J]. 工程力学, 2017, 34(增刊): 5-10.
[13] 李少杰, 刘小兵, 杨群, 刘庆宽, 马文勇. 分离双扁平箱梁气动力干扰效应研究[J]. 工程力学, 2017, 34(增刊): 89-93.
[14] 郑云飞, 刘庆宽, 刘小兵, 马文勇. 端部状态对斜拉索节段模型气动特性的影响[J]. 工程力学, 2017, 34(增刊): 192-196.
[15] 卢照亮, 刘晓玲, 郑云飞, 刘庆宽, 马文勇, 刘小兵. 斜拉索表面粗糙度对干索驰振的影响[J]. 工程力学, 2017, 34(增刊): 174-178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日