工程力学 ›› 2019, Vol. 36 ›› Issue (4): 214-220,230.doi: 10.6052/j.issn.1000-4750.2018.03.0133

• 土木工程学科 • 上一篇    下一篇

海相淤泥质土中后注浆微型钢管桩浆液扩散及承载特性研究

文磊1, 孔纲强1, 张振东2, 李青松2   

  1. 1. 河海大学岩土力学与堤坝工程教育部重点实验室, 江苏, 南京 210098;
    2. 淮海工学院土木与港海工程学院, 江苏, 连云港 222005
  • 收稿日期:2018-03-07 修回日期:2018-06-20 出版日期:2019-04-25 发布日期:2019-04-15
  • 通讯作者: 孔纲强(1982-),男,浙江磐安人,教授,博士,博导,主要从事桩-土相互作用方面的教学与研究工作(E-mail:gqkong1@163.com). E-mail:gqkong1@163.com
  • 作者简介:文磊(1991-),男,湖北荆门人,博士生,主要从事桩-土相互作用及透明土试验技术方面的研究工作(E-mail:wenleihhu@163.com);张振东(1979-),男,辽宁人,副教授,博士,主要从事结构-土相互作用方面的教学与研究(E-mail:qinghan0623@126.com);李青松(1975-),男,江苏人,副教授,博士,主要从事结构-土相互作用方面的教学与研究(E-mail:lqshhit@163.com).
  • 基金资助:
    国家自然科学基金项目(51478165,51639002)

STUDY ON THE DIFFUSION AND BEARING CAPACITY OF POSTGROUTING STEEL PIPE MICROPILES IN MARINE MUDDY SOIL

WEN Lei1, KONG Gang-qiang1, ZHANG Zhen-dong2, LI Qing-song2   

  1. 1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, Jiangsu 210098, China;
    2. College of Civil and Harbour Engineering, Huaihai Institute of Technology, Lianyungang, Jiangsu 222005, China
  • Received:2018-03-07 Revised:2018-06-20 Online:2019-04-25 Published:2019-04-15

摘要: 后注浆微型钢管桩以其施工速度快、场地适应性好及承载力高等技术特点,广泛应用于基础托换及软基加固工程中;然而,针对海相淤泥质土中浆液扩散规律及承载特性的研究仍相对较少。开展连云港海相淤泥质土中静压微型钢管桩及后注浆微型钢管桩承载特性现场试验,对比分析桩侧注浆对微型钢管桩承载特性的影响规律。基于透明黏土材料和PIV技术,开展后注浆微型钢管桩沉桩及注浆过程可视化模型试验研究,观测分析微型钢管桩静压沉桩过程中桩周土体位移场、桩侧注浆施工过程中浆液扩散规律。研究结果表明,现场实测后注浆微型钢管桩竖向抗压承载力约为常规微型钢管桩承载力的2.4倍;静压微型钢管桩沉桩挤土效应小于4.5D,海相淤泥质土中注浆浆液扩散形式以水平向二次劈裂注浆为主。

关键词: 微型钢管桩, 后注浆桩, 透明黏土, 承载特性, 现场试验

Abstract: Post-grouting steel pipe micropiles are widely used in the underpinning and soft ground reinforcement engineering due to its fast construction, good adaptability and high bearing capacity. However, there is little research on the grouting diffusion mechanisms and the bearing capacity of the micropiles in marine muddy soil. Field tests on the bearing capacity of both grouted and non-grouted steel pipe micropiles in muddy soil in Lianyungang were carried out. The influence of post-grouting on the bearing capacity of the steel pipe micropiles was evaluated. Based on the transparent clay and the particle image velocimetry (PIV) technique, visual model tests on the construction process of steel pipe micropiles were conducted. The displacement of surrounding soil and side-grouting diffusion in transparent clay were measured and discussed. Field test results show that the bearing capacity of the grouted micropile was improved to nearly 2.4 times compared to that of the non-grouted micropiles. It also shows that the maximum influence range of the pile installation in the horizontal direction was about 4.5D from the center of the micropile; and grouting diffusion in the muddy soil mainly belonged to fracture grouting in the horizontal direction.

Key words: steel pipe micropile, post-grouting pile, transparent clay, bearing capacity, field test

中图分类号: 

  • TU47
[1] Han J, Ye S L. A field study on the behavior of a foundation underpinned by micropile[J]. Canadian Geotechnical Journal, 2006, 43(1):30-42.
[2] Larsson K, Jog D. Performance of micropiles used to underpin highway bridges[J]. Journal of Performance of Constructed Facilities, 2012, 28(3):592-607.
[3] 吕凡任, 陈仁朋, 陈云敏, 等. 软土地基上微型桩抗压和抗拔特性试验研究[J]. 土木工程学报, 2005, 38(3):99-105. Lü Fanren, Chen Renpeng, Chen Yunmin, et al. Field tests on compression and uplift behavior of micropiles in soft ground[J]. China Civil Engineering Journal, 2005, 38(3):99-105. (in Chinese)
[4] Han J, Ye S L. A field study on the behavior of micropiles in clay under compression or tension[J]. Canadian Geotechnical Journal, 2006, 43(1):19-29.
[5] Jang Y E, Han J T. Field study on the axial bearing capacity and load transfer characteristic of waveform micropile[J]. Canadian Geotechnical Journal, 2018, 55:653-665.
[6] 苏荣臻, 郑卫锋, 鲁先龙. 压力注浆对微型桩抗拔承载力影响的试验对比[J]. 工业建筑, 2011, 41(1):93-96. Su Rongzhen, Zheng Weifeng, Lu Xianlong. Test comparison of influence of pressure grouting on uplift capacity of micropiles[J]. Industrial Construction, 2011, 41(1):93-96. (in Chinese)
[7] 马忠政. 注浆钢管桩抗拔承载力试验研究[J]. 土工基础, 2014, 28(2):22-25. Ma Zhongzhen. Field static uplift test of grouted steel pipe piles[J]. Soil Engineering and Foundation, 2014, 28(2):22-25. (in Chinese)
[8] Russo G. Full-scale load tests on instrumented micropiles[J]. Geotechnical Engineering, 2004, 157(3):127-135.
[9] Elaziz A Y A, El-Naggarm M H. Geotechnical capacity of hollow-bar micropiles in cohesive soils[J]. Canadian Geotechnical Journal, 2014, 51(10):1123-1138.
[10] 龚晓南, 李向红. 静力压桩挤土效应中的若干力学问题[J]. 工程力学, 2000, 17(4):7-12. Gong Xiaonan, Li Xianghong. Several mechanical problems in compacting effects of static piling in soft clay ground[J]. Engineering Mechanics, 2000, 17(4):7-12. (in Chinese)
[11] 曹兆虎, 孔纲强, 刘汉龙, 等. 基于PIV技术的沉桩过程土体位移场模型试验研究[J]. 工程力学, 2014, 31(8):168-174. Cao Zhaohu, Kong Gangqiang, Liu Hanlong, et al. Model test on deformation characristic of pile driving in sand using PIV technique[J]. Engineering Mechanics, 2014, 31(8):168-174. (in Chinese)
[12] 曹兆虎, 孔纲强, 刘汉龙, 等. 基于透明土的管桩贯入特性模型试验研究[J]. 岩土工程学报, 2014, 36(8):1564-1568. Cao Zhaohu, Kong Gangqiang, Liu Hanlong, et al. Model tests on pipe pile penetration by using transparent soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8):1564-1568. (in Chinese)
[13] Kong G Q, Cao Z H, Zhou H, et al. Analysis of piles under oblique pullout load using transparent-soil models[J]. Geotechnical Testing Journal, 2015, 38(5):725-738.
[14] 曹兆虎, 孔纲强, 文磊, 等. 楔形管桩沉桩及桩端后注浆可视化模型试验[J]. 铁道科学与工程学报, 2017, 14(5):922-927. Cao Zhaohu, Kong Gangqiang, Wen Lei, et al. Visualization model test on tapered pipe pile installation and pile tip grouting process[J]. Journal of Railway Science and Engineering, 2017, 14(5):922-927. (in Chinese)
[15] Gao Y, Sui W H, Liu J Y. Visualization of chemical grout permeation in transparent soil[J]. Geotechnical Testing Journal, 2015, 38(5):774-786.
[16] Schlue B F, Moerz T, Kreiter S. Influence of shear rate on undrained vane shear strength of organic harbor mud[J]. Journal of Geotechnical & Geoenvironmental Engineering, ASCE, 2010, 136(10):1437-1447.
[17] Tavenas F, Jean P, Leblond P, et al. The permeability of natural soft clays[J]. Canadian Geotechnical Journal, 2011, 20(4):645-660.
[18] 孔纲强, 周杨, 刘汉龙, 等. 新型透明黏土制配及其物理力学性质[J]. 岩土工程学报, 2018, 40(12):2208-2214. Kong Gangqiang, Zhou Yang, Liu Hanlong, et al. Study on new transparent clay manufacture and its physical and mechanical properties[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12):2208-2214.
[19] 张忠苗. 灌注桩后注浆技术及工程应用[M]. 北京:中国建筑工业出版社, 2009. Zhang Zhongmiao. Post-grouting technology of cast-inplace pile and its engineering applications[M]. Beijing:China Architecture & Building Press, 2009. (in Chinese)
[1] 竺明星, 龚维明, 卢红前, 王磊. 考虑侧阻与端阻影响的基桩水平承载力传递矩阵解[J]. 工程力学, 2018, 35(S1): 230-238.
[2] 田甜, 雷洋, 齐法琳, 黎国清. 不同时速列车振动荷载下衬砌拱圈振动响应传递规律[J]. 工程力学, 2018, 35(5): 143-151.
[3] 蔡建军, 谢璨, 李树忱, 李术才, 赵世森. 复杂条件下深基坑多层支护方法及数值模拟研究[J]. 工程力学, 2018, 35(2): 188-194.
[4] 张建辉, 张静堃, 孟黎, 李永辉. 强夯加固风成砂地基的土层沉降研究[J]. 工程力学, 2014, 31(增刊): 145-148,154.
[5] 袁满, 丁继辉, 冯俊辉, 张攀星. 同一场地上不同桩型复合地基的静力特性试验[J]. 工程力学, 2014, 31(增刊): 46-50.
[6] 张顶立,陈峰宾,房倩. 隧道初期支护结构受力特性及适用性研究[J]. 工程力学, 2014, 31(7): 78-84.
[7] 赵明华 雷 勇. 基于分形理论的人工挖孔嵌岩桩承载特性分析[J]. 工程力学, 2012, 29(12): 127-133.
[8] 谢 楠. 混凝土浇筑期高大模板支架工作状态的试验测试[J]. 工程力学, 2011, 28(增刊I): 85-089.
[9] 矫滨田;时忠民;鲁晓兵;张建红. 粉土地层中桶形基础水平动载响应的离心机实验研究[J]. 工程力学, 2010, 27(7): 131-141.
[10] 蒋建平;章杨松;高广运. 基于现场试验的超长桩端阻力承载性状研究[J]. 工程力学, 2010, 27(2): 149-160.
[11] 曹艳梅;夏禾;战家旺. 运行列车引起高层建筑物振动的试验研究及数值分析[J]. 工程力学, 2006, 23(11): 182-187,.
[12] 张楠;夏禾. 铁路桥梁在高速列车作用下的动力响应分析[J]. 工程力学, 2005, 22(3): 144-151.
[13] 朱岳明;徐之青;曹为民;贺金仁;吴健;闪黎;马东亮. 墩墙混凝土结构水管冷却分析[J]. 工程力学, 2004, 21(5): 183-187,.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日