工程力学 ›› 2019, Vol. 36 ›› Issue (4): 206-213.doi: 10.6052/j.issn.1000-4750.2018.03.0127

• 土木工程学科 • 上一篇    下一篇

节点性能对分层装配支撑钢框架抗震性能的影响研究

王伟1,2, 胡书领1,2, 邹超2, 陈越时2   

  1. 1. 同济大学土木工程防灾国家重点实验室, 上海 200092;
    2. 同济大学建筑工程系, 上海 200092
  • 收稿日期:2018-03-07 修回日期:2018-07-11 出版日期:2019-04-25 发布日期:2019-04-15
  • 通讯作者: 胡书领(1994-),男,江苏宿迁人,博士生,从事钢结构抗震研究(E-mail:hushuling@tongji.edu.cn); E-mail:hushuling@tongji.edu.cn
  • 作者简介:王伟(1977-),男,江西南昌人,教授,博士,主要从事钢结构抗震研究(E-mail:weiwang@tongji.edu.cn);邹超(1990-),男,湖南邵阳人,硕士,从事钢结构抗震研究(E-mail:zouxiaochao2009@163.com);陈越时(1991-),男,安徽亳州人,博士,从事钢结构抗震研究(E-mail:chenyosea@gmail.com).
  • 基金资助:
    国家自然科学基金项目(51778459);上海市曙光人才计划课题项目(15SG19)

THE EFFECTS OF JOINT BEHAVIOR ON THE SEISMIC PERFORMANCE OF FLOOR-BY-FLOOR ASSEMBLED STEEL BEAM-THROUGH BRACED FRAMES

WANG Wei1,2, HU Shu-ling1,2, ZOU Chao2, CHEN Yue-shi2   

  1. 1. State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China;
    2. Department of Structural Engineering, Tongji University, Shanghai 200092, China
  • Received:2018-03-07 Revised:2018-07-11 Online:2019-04-25 Published:2019-04-15

摘要: 该文以分层装配梁贯通式支撑钢框架为对象,通过引入节点弯矩-转角本构模型的数值模拟方法,研究节点刚度和承载力设置对结构体系抗震性能的影响。分析结果表明,节点刚度对结构自振频率影响不大,但影响结构在静力推覆下的失效演进模式和地震作用下的滞回特性,节点刚度小于4倍相邻柱线刚度时,结构不能满足罕遇地震下的层间位移角限值要求;节点承载力对静力推覆下结构的极限承载力影响很小,对罕遇地震作用下的结构滞回特性和层间位移分布几乎没有影响。

关键词: 支撑钢框架, 梁贯通, 抗震性能, 节点刚度, 节点承载力

Abstract: This paper presents a research on floor-by-floor assembled steel beam-through braced frames. By introducing a numerical simulation method of the moment-rotation constitutive model of joints, the influence of the joint rigidity and strength on the seismic performance of the structure system is studied. The analysis results indicate that the impact of the joint rigidity on the structure's frequency of vibration is small. Structures with different joint rigidities have different failure modes under the static pushover. The hysteretic behavior of the structure is closely related with the rigidity of joints. When the rigidity of joints is smaller than four times of the line rigidity of columns, the structure's maximum story drift ratio cannot satisfy the limit under severe earthquakes required by the present Chinese codes. Meanwhile, the strength of the joints slightly affects the structure ultimate strength under the static pushover and has little influence on the hysteretic behavior and story drift distribution of the structure under severe earthquakes.

Key words: steel braced frame, beam-through, seismic performance, joint rigidity, joint strength

中图分类号: 

  • TU391
[1] 王伟, 陈以一, 余亚超, 等. 分层装配式支撑钢结构工业化建筑体系[J]. 建筑结构, 2012, 42(10):48-52. Wang Wei, Chen Yiyi, Yu Yachao, et al. Floor-by-floor assembled steel braced structures for prefabricated buildings[J]. Building Structure, 2012, 42(10):48-52. (in Chinese)
[2] Wang W, Zhou Q, Chen Y, et al. Experimental and numerical investigation on full-scale tension-only concentrically braced steel beam-through frames[J]. Journal of Constructional Steel Research, 2013, 80:369-385.
[3] 周青, 王伟, 陈以一, 等. 分层装配式支撑钢结构工业化建筑体系抗震性能试验研究[J]. 建筑结构, 2012, 42(10):61-64. Zhou Qing, Wang Wei, Chen Yiyi, et al. Experimental research on seismic performance of floor-by-floor assembled steel braced structures for prefabricated buildings[J]. Building Structure, 2012, 42(10):61-64. (in Chinese)
[4] 刘浩晋, 王伟, 陈以一, 等. 分层装配式支撑钢结构梁贯通式节点研制与性能试验[J]. 建筑结构, 2012, 42(10):53-56. Liu Haojin, Wang Wei, Chen Yiyi, et al. Development and behaviour testing of beam through connections of floor-by-floor assembled steel braced structures[J]. Building Structure, 2012, 42(10):53-56. (in Chinese)
[5] 邹超, 王伟. 梁贯通式支撑钢结构节点耗能模拟等效构件法[J]. 建筑结构, 2015, 45(2):10-14. Zou Chao, Wang Wei. Equivalent component method for energy dissipation modelling of joint in steel beam-through braced structures[J]. Building Structure, 2015, 45(2):10-14. (in Chinese)
[6] Hadianfard M A, Razani R. Effects of semi-rigid behavior of connections in the reliability of steel frames[J]. Structural Safety, 2003, 25(2):123-138.
[7] Jones S W, Kirby P A, Nethercot D A. Effect of semi-rigid connections on steel column strength[J]. Journal of Constructional Steel Research, 1980, 1(1):38-46.
[8] Moncarz P D, Gerstl K H. Steel frames with nonlinear connections[J]. Journal of the Structural Division, 1981, 107(8):1427-1441.
[9] 李国强, 沈祖炎. 半刚性连接钢框架弹塑性地震反应分析[J]. 同济大学学报:自然科学版, 1992(2):123-128. Li Guoqiang, Shen Zuyan. Analysis of elasto-plastic seismic responses of semi-rigidly connected steel frames[J]. Journal of Tongji University, 1992(2):123-128. (in Chinese)
[10] 完海鹰, 王建国, 王秀喜. 地震荷载下双腹板-顶底角钢连接半刚接钢框架的动力特性研究[J]. 工程力学, 2011, 28(4):145-150. Wan Haiying, Wang Jianguo, Wang Xiuxi. Study on dynamic characteristic of the steel frames with semi-rigid connection of top and seat angles with double web angle[J]. Engineering Mechanics, 2011, 28(4):145-150. (in Chinese)
[11] 沈蒲生, 胡习兵, 舒兴平. 半刚性连接钢框架稳定性的刚重比控制方法[J]. 工程力学, 2006, 23(11):80-84. Shen Pusheng, Hu Xibing, Shu Xingping. Control method of stability of steel frames with semi-rigid connections by its ratio of rigidity-to-gravity[J]. Engineering Mechanics, 2006, 23(11):80-84. (in Chinese)
[12] Eurocode 3, Design of steel structures, part 1-8:design of joint[S]. Brussels:European Committee for Standardization, 2005.
[13] 刘浩晋. 全螺栓现场连接梁贯通式节点性能研究[D]. 上海:同济大学, 2012. Liu Haojin. Research of the behaviour of beam through spot full-bolted connections[D]. Shanghai:Tongji University, 2012. (in Chinese)
[14] 张一舟, 王元清, 施刚, 等. 节点刚度对多层钢框架静力性能的影响分析[J]. 青岛理工大学学报, 2006, 27(3):29-33. Zhang Yizhou, Wang Yuanqing, Shi Gang, et al. The effect of joint stiffness on static capability of multi-story steel frames[J]. Journal of Qingdao Technological University, 2006, 27(3):29-33. (in Chinese)
[15] 刘大伟, 王伟, 马场峰雄, 等. 分层装配式钢结构体系新型支撑研制与性能试验[J]. 建筑结构, 2012, 42(10):57-60. Liu Dawei, Wang Wei, Baba Mineo, et al. Development and behavior testing of innovative braces of floor-by-floor assembled steel structures[J]. Building Structure, 2012, 42(10):57-60. (in Chinese)
[1] 李腾飞, 苏明周, 隋龑, 马磊, 韩丹. 高强钢组合K形偏心支撑钢框架抗震性能混合试验[J]. 工程力学, 2019, 36(4): 100-108,124.
[2] 董金芝, 张富文, 李向民. 框架-预应力摇摆墙结构抗震性能试验研究[J]. 工程力学, 2019, 36(4): 167-176.
[3] 徐龙河, 武虎. 设置自复位耗能支撑的斜拉桥横向抗震性能研究[J]. 工程力学, 2019, 36(4): 177-187.
[4] 陈云, 蒋欢军, 刘涛, 万志威, 鲁正. 分级屈服型金属阻尼器抗震性能研究[J]. 工程力学, 2019, 36(3): 53-62.
[5] 王景全, 王震, 高玉峰, 诸钧政. 预制桥墩体系抗震性能研究进展:新材料、新理念、新应用[J]. 工程力学, 2019, 36(3): 1-23.
[6] 田小红, 苏明周, 连鸣, 李慎, 王凤. 高强钢组合K形偏心支撑钢框架抗震性能分析[J]. 工程力学, 2019, 36(3): 182-191.
[7] 邓明科, 吕浩, 宋恒钊. 外包钢板-高延性混凝土组合连梁抗震性能试验研究[J]. 工程力学, 2019, 36(3): 192-202.
[8] 朱张峰, 郭正兴. 考虑竖向与水平接缝的工字形装配式混凝土剪力墙抗震性能试验研究[J]. 工程力学, 2019, 36(3): 139-148.
[9] 蒋庆, 王瀚钦, 冯玉龙, 种迅. 铰支桁架-框架结构抗震设计与性能研究[J]. 工程力学, 2019, 36(3): 105-113.
[10] 白国良, 秦朝刚, 徐亚洲, 苏宁粉, 吴涛, 孙煜喆. 装配整体式与现浇剪力墙结构抗震性能对比分析[J]. 工程力学, 2019, 36(2): 36-44.
[11] 徐强, 郑山锁, 商校瑀. 近海大气环境作用下钢框架节点时变地震损伤研究[J]. 工程力学, 2019, 36(1): 61-69.
[12] 张微敬, 张晨骋. 钢筋套筒挤压连接的预制RC柱非线性有限元分析[J]. 工程力学, 2018, 35(S1): 67-72.
[13] 尚庆学, 李泽, 刘瑞康, 王涛. 管线系统抗震支架力学试验研究[J]. 工程力学, 2018, 35(S1): 120-125,133.
[14] 陈嵘, 雷俊卿. 变轴力钢筋混凝土墩柱抗震性能研究[J]. 工程力学, 2018, 35(S1): 239-245.
[15] 徐春一, 逯彪, 余希. 玻纤格栅配筋砌块墙体抗震性能试验研究[J]. 工程力学, 2018, 35(S1): 126-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日